Question
Mathematics Question on Event
Three coins are tossed. Describe (i)Two events which are mutually exclusive. (ii)Three events which are mutually exclusive and exhaustive.(iii)Two events, which are not mutually exclusive.(iv)Two events which are mutually exclusive but not exhaustive.(v)Three events which are mutually exclusive but not exhaustive.
When three coins are tossed, the sample space is given by
S=HHH,HHT,HTH,HTT,THH,THT,TTH,TTT
(i) Two events that are mutually exclusive can be
A: getting no heads and B: getting no tails
This is because sets A =TTT and B=HHH are disjoint.
(ii) Three events that are mutually exclusive and exhaustive can be
A: getting no heads
B: getting exactly one head
C: getting at least two heads
i.e.,
A=TTT
B=HTT,THT,TTH
C=HHH,HHT,HTH,THH
This is because Aa^ˆc◯B=Ba^ˆc◯C=Ca^ˆc◯A=I^¦ and Aa^ˆªBa^ˆªC=S
(iii) Two events that are not mutually exclusive can be
A: getting three heads
B: getting at least 2 heads
i.e.,
A=HHH
B=HHH,HHT,HTH,THH
This is because A ∩ B = \{HHH\} ≠Φ
(iv) Two events which are mutually exclusive but not exhaustive can be
A: getting exactly one head
B: getting exactly one tail That is
A=HTT,THT,TTH
B=HHT,HTH,THH
It is because, Aa^ˆc◯B=I^¦, but Aa^ˆªBa^‰S
(v) Three events that are mutually exclusive but not exhaustive can be
A: getting exactly three heads
B: getting one head and two tails
C: getting one tail and two heads
i.e.,
A=HHH
B=HTT,THT,TTH
C=HHT,HTH,THH
This is because Aa^ˆc◯B=Ba^ˆc◯C=Ca^ˆc◯A=I^¦,but Aa^ˆªBa^ˆªCa^‰S