Solveeit Logo

Question

Physics Question on electrostatic potential and capacitance

Three charges q1,+q2- \text{q}_{1} , \, + \text{q}_{2} and q3- \text{q}_{3} are placed as shown in the figure. The x\text{x} - component of the force on q1- \text{q}_{1} is proportional to

A

q2b2q3a2cosθ\frac{\textit{q}_{2}}{b^{2}} - \frac{\textit{q}_{3}}{a^{2}} \text{cos} \theta

B

q2b2+q3a2sinθ\frac{\textit{q}_{2}}{b^{2}} + \frac{\textit{q}_{3}}{a^{2}} \text{sin} \theta

C

q2b2+q3a2cosθ\frac{\textit{q}_{2}}{b^{2}} + \frac{\textit{q}_{3}}{a^{2}} \text{cos} \theta

D

q2b2q3a2sinθ\frac{\textit{q}_{2}}{b^{2}} - \frac{\textit{q}_{3}}{a^{2}} \text{sin} \theta

Answer

q2b2+q3a2sinθ\frac{\textit{q}_{2}}{b^{2}} + \frac{\textit{q}_{3}}{a^{2}} \text{sin} \theta

Explanation

Solution

Force on ( q1- q_{1} ) due to q2=q1q24πϵ0b2q_{2} = \frac{q_{1} q_{2}}{4 \pi \epsilon _{0} b^{2}} \therefore F1=q1q24πϵ0b2\textit{F}_{1} = \frac{\textit{q}_{1} \textit{q}_{2} }{4 \pi \epsilon _{0} b^{2}} along (q1q2)\left(q_{1} q_{2}\right) Force on((q)1)due to((q)3)\text{Force on} \left(- \left(\text{q}\right)_{1}\right) \text{due to} \left(\left(- \text{q}\right)_{3}\right) =((q)1()(q)3)4π(ϵ)0a2= \frac{\left(\left(\right. \textit{q}\right)_{1} \left(\left.\right) \left(\right. \textit{q}\right)_{3} \left.\right) }{4 \pi \left(\epsilon \right)_{0} a^{2}} F2=q1q34πϵ0a2\textit{F}_{2} = \frac{\textit{q}_{1} \textit{q}_{3} }{4 \pi \epsilon _{0} a^{2}} as shown F2F_{2} > makes an angle of ((90)0θ)\left(\left(\text{90}\right)^{0} - \theta \right) with (q1q2)\left(q_{1} q_{2}\right) Resolved part of F2F_{2} along q1q2q_{1} q_{2} =F2cos((90)0θ)= F_{2} cos \left(\left(90\right)^{0} - \theta \right) =q1q3sinθ4πϵ0a2 = \frac{\textit{q}_{1} \textit{q}_{3} \text{sin} \theta }{4 \pi \epsilon _{0} a^{2}} along (q1q2)\left(q_{1} q_{2}\right) \therefore Total force on (q1)\left(- q_{1}\right) =[q1q24πϵ0b2+q1q3sinθ4πϵ0a2]= \left[\right. \frac{\textit{q}_{1} \textit{q}_{2}}{4 \pi \epsilon _{0} b^{2}} + \frac{\textit{q}_{1} \textit{q}_{3} \text{sin} \theta }{4 \pi \epsilon _{0} a^{2}} \left]\right. along x-axis \therefore x-component of force [q2b2+q3a2sinθ] \propto \left[\right. \frac{\textit{q}_{2}}{b^{2}} + \frac{\textit{q}_{3}}{a^{2}} \text{sin} \theta \left]\right. .