Solveeit Logo

Question

Question: Three charges of equal magnitude q is placed at the vertices of an equilateral triangle of side l. T...

Three charges of equal magnitude q is placed at the vertices of an equilateral triangle of side l. The force on a charge Q placed at the centroid of the triangle is.

A

3Qq4πε0l2\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}

B

2Qq4πε0l2\frac{2Qq}{4\pi\varepsilon_{0}l^{2}}

C

Qq4πε0l2\frac{Qq}{4\pi\varepsilon_{0}l^{2}}

D

Zero

Answer

Zero

Explanation

Solution

:

As shown in figure draw AD \botBC.

AD=ABcos30o=l32\therefore AD = AB\cos 30^{o} = \frac{l\sqrt{3}}{2}

Distance AO of the centroid O from A

=23AD=2l332=13= \frac{2}{3}AD = \frac{2l}{3}\frac{\sqrt{3}}{2} = \frac{1}{\sqrt{3}}

\therefore Force on Q at O due to charge q1=qatAq_{1} = qatA

F1=14πε0Qq(l / 3)2=3Qd4πε0l2,F_{1} = \frac{1}{4\pi\varepsilon_{0}}\frac{\text{Qq}}{(\text{l / }\sqrt{3})^{2}} = \frac{3Qd}{4\pi\varepsilon_{0}l^{2}}, along AO

Similarly, force on O due to charge q2=qq_{2} = q at B

F2=3Qq4πε0l2F_{2} = \frac{3Qq}{4\pi\varepsilon_{0}l^{2}} along BO

And force on Q due to charge q3=qq_{3} = qat C

F3=3Qq4πε0l2F_{3} = \frac{3Qq}{4\pi\varepsilon_{0}l^{2}} along CO

Angle between forces F2F_{2}and F3F_{3}= 120o120^{o}

By parallelogram law, resultant of F2F_{2} an

F3=3Qq4πεol2F_{3} = \frac{3Qq}{4\pi\varepsilon_{o}l^{2}} along OA

\thereforeTotal force on Q=3Qq4πε0l23Qq4πε0l2=0= \frac{3Qq}{4\pi\varepsilon_{0}l^{2}} - \frac{3Qq}{4\pi\varepsilon_{0}l^{2}} = 0