Solveeit Logo

Question

Physics Question on Electric Charge

Three charges of equal magnitude qq is placed at the vertices of an equilateral triangle of side ll. The force on a charge QQ placed at the centroid of the triangle is

A

3Qq4πε0l2\frac{3\,Qq}{4\pi\varepsilon_{0}l^{2}}

B

2Qq4πε0l2\frac{2\,Qq}{4\pi\varepsilon_{0}l^{2}}

C

Qq2πε0l2\frac{Qq}{2\pi\varepsilon_{0}l^{2}}

D

zero

Answer

zero

Explanation

Solution

As shown in figure draw ADBCAD \bot BC. AD=ABcos30=l32\therefore AD=AB\,cos30^{\circ}=\frac{l\sqrt{3}}{2} Distance AOAO of the centroid OO from A =23AD=2l332=l3=\frac{2}{3}AD=\frac{2l}{3} \frac{\sqrt{3}}{2}=\frac{l}{\sqrt{3}} \therefore Force on QQ at OO due to charge q1=qq_1 = q at AA, F1=14πε0Qq(l/3)2=3Qq4πε0l2\vec{F}_{1}=\frac{1}{4\pi\varepsilon_{0}} \frac{Qq}{\left(l / \sqrt{3}\right)^{2}}=\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}, along AOAO Similarly, force on OO due to charge q2=qq_{2} = q at BB F2=3Qq4πε0l2\vec{F}_{2}=\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}, along BOBO and force on QQ due to charge q3=qq_{3}= q at CC F3=3Qq4πε0l2\vec{F}_{3}=\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}, along COCO Angle between forces F2F_{2} and F3=120F_{3}=120^{\circ} By parallelogram law, resultant of F2\vec{F}_{2} and F2=3Qq4πε0l2\vec{F}_{2}=\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}, along OAOA \therefore Total force on Q=3Qq4πε0l23Qq4πε0l2=0Q=\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}-\frac{3Qq}{4\pi\varepsilon_{0}l^{2}}=0