Solveeit Logo

Question

Question: Three Carnot engines operate in series between a heat source at a temperature \({{\text{T}}_1}\) and...

Three Carnot engines operate in series between a heat source at a temperature T1{{\text{T}}_1} and a heat sink at a temperature T4{{\text{T}}_4} (see figure). There are two other reservoirs at temperatures T2{{\text{T}}_2} and T3{{\text{T}}_3}, as shown, with T1>T2>T3>T4{{\text{T}}_1} > {{\text{T}}_2} > {{\text{T}}_3} > {{\text{T}}_4}. The three engines will be equally efficient if

(A) T2=(T12T4)1/3{{\text{T}}_2} = {\left( {{{\text{T}}_1}^2{{\text{T}}_4}} \right)^{1/3}};T3=(T1T42)1/3{{\text{T}}_3} = {\left( {{{\text{T}}_1}{{\text{T}}_4}^2} \right)^{1/3}}
(B) T2=(T1T42)1/3{{\text{T}}_2} = {\left( {{{\text{T}}_1}{{\text{T}}_4}^2} \right)^{1/3}};T3=(T12T4)1/3{{\text{T}}_3} = {\left( {{{\text{T}}_1}^2{{\text{T}}_4}} \right)^{1/3}}
(C) T2=(T13T4)1/4{{\text{T}}_2} = {\left( {{{\text{T}}_1}^3{{\text{T}}_4}} \right)^{1/4}};T3=(T1T43)1/4{{\text{T}}_3} = {\left( {{{\text{T}}_1}{{\text{T}}_4}^3} \right)^{1/4}}
(D) T2=(T1T4)1/2{{\text{T}}_2} = {\left( {{{\text{T}}_1}{{\text{T}}_4}} \right)^{1/2}};T3=(T12T4)1/3{{\text{T}}_3} = {\left( {{{\text{T}}_1}^2{{\text{T}}_4}} \right)^{1/3}}

Explanation

Solution

Hint To solve this question, we have to use the expression of the efficiency of a heat engine, for the three engines given. Then, we have to equate the three efficiencies to get three equations, with the help of which we will get the answer.
The formula used to solve this question is
η=1TsinkTsource\Rightarrow \eta = 1 - \dfrac{{{T_{sink}}}}{{{T_{source}}}}, where is the efficiency of a heat engine having Tsource{T_{source}} as the temperature of the heat source and Tsink{T_{sink}} as the temperature of the heat sink.

Complete step by step answer
Let η1{\eta _1}, η2{\eta _2} and η3{\eta _3} be the efficiencies of the heat engines E1\Rightarrow {E_1},E2{E_2} and E3{E_3} respectively.
For the heat engine E1{E_1}
As we know that the heat source has a higher temperature than the heat sink.
T1>T2\because {{\text{T}}_1} > {{\text{T}}_2}
So, T1{{\text{T}}_1} is the temperature of the heat source, and T1{{\text{T}}_1} is the temperature of the heat sink.
Now, we know that the efficiency of a heat engine is given by
η=1TsinkTsource\Rightarrow \eta = 1 - \dfrac{{{T_{sink}}}}{{{T_{source}}}}
So, the efficiency of the first heat engine
η1=1T2T1\Rightarrow {\eta _1} = 1 - \dfrac{{{T_2}}}{{{T_1}}} (1)
Similarly,
η2=1T3T4\Rightarrow {\eta _2} = 1 - \dfrac{{{T_3}}}{{{T_4}}}, and (2)
η3=1T4T3\Rightarrow {\eta _3} = 1 - \dfrac{{{T_4}}}{{{T_3}}} (3)
According to the question, η1=η2=η3{\eta _1} = {\eta _2} = {\eta _3}
Equating (1) and (2), we get
1T2T1=1T3T2\Rightarrow 1 - \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{{T_3}}}{{{T_2}}}
So that
T2T1=T3T2\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_3}}}{{{T_2}}}
By cross multiplying, we get
T22=T1T3\Rightarrow {T_2}^2 = {T_1}{T_3} (4)
Equating (2) and (3), we get
1T3T2=1T4T3\Rightarrow 1 - \dfrac{{{T_3}}}{{{T_2}}} = 1 - \dfrac{{{T_4}}}{{{T_3}}}
So that
T3T2=T4T3\Rightarrow \dfrac{{{T_3}}}{{{T_2}}} = \dfrac{{{T_4}}}{{{T_3}}}
By cross multiplying, we get
T32=T2T4\Rightarrow {T_3}^2 = {T_2}{T_4} (5)
Equating (1) and (3), we get
1T2T1=1T4T3\Rightarrow 1 - \dfrac{{{T_2}}}{{{T_1}}} = 1 - \dfrac{{{T_4}}}{{{T_3}}}
So that
T2T1=T4T3\Rightarrow \dfrac{{{T_2}}}{{{T_1}}} = \dfrac{{{T_4}}}{{{T_3}}}
T2=T1T4T3\Rightarrow {T_2} = \dfrac{{{T_1}{T_4}}}{{{T_3}}} (6)
Dividing (4) by (5)
(T2T3)2=T1T3T2T4\Rightarrow {\left( {\dfrac{{{T_2}}}{{{T_3}}}} \right)^2} = \dfrac{{{T_1}{T_3}}}{{{T_2}{T_4}}}
Multiplying by T2T3\dfrac{{{T_2}}}{{{T_3}}} both the sides
(T2T3)3=T1T4\Rightarrow {\left( {\dfrac{{{T_2}}}{{{T_3}}}} \right)^3} = \dfrac{{{T_1}}}{{{T_4}}}
T2T3=(T1T4)1/3\Rightarrow \dfrac{{{T_2}}}{{{T_3}}} = {\left( {\dfrac{{{T_1}}}{{{T_4}}}} \right)^{1/3}}
T2=(T1T4)1/3T3\Rightarrow {T_2} = {\left( {\dfrac{{{T_1}}}{{{T_4}}}} \right)^{1/3}}{T_3} (7)
Substituting (6)
T1T4T3=(T1T4)1/3T3\Rightarrow \dfrac{{{T_1}{T_4}}}{{{T_3}}} = {\left( {\dfrac{{{T_1}}}{{{T_4}}}} \right)^{1/3}}{T_3}
T32=T12/3T44/3\Rightarrow {T_3}^2 = {T_1}^{2/3}{T_4}^{4/3}
Taking square root
T3=T11/3T42/3\Rightarrow {T_3} = {T_1}^{1/3}{T_4}^{2/3}
T3=(T1T42)1/3\Rightarrow {T_3} = {\left( {{T_1}{T_4}^2} \right)^{1/3}}
Substituting in (7)
T2=(T1T4)1/3(T1T42)1/3\Rightarrow {T_2} = {\left( {\dfrac{{{T_1}}}{{{T_4}}}} \right)^{1/3}}{\left( {{T_1}{T_4}^2} \right)^{1/3}}
T2=T12/3T41/3\Rightarrow {T_2} = {T_1}^{2/3}{T_4}^{1/3}
Or
T2=(T12T4)1/3\Rightarrow {T_2} = {\left( {{T_1}^2{T_4}} \right)^{1/3}}
Therefore, T2=(T12T4)1/3{T_2} = {\left( {{T_1}^2{T_4}} \right)^{1/3}}and T3=(T1T42)1/3{T_3} = {\left( {{T_1}{T_4}^2} \right)^{1/3}}
Hence, the correct answer is option (A).

Note
To solve these types of problems involving multiple variables, we just need to see in the options what variables are to be found out. We just need to separate those variables and write them in the form of remaining variables from the equations formed.