Solveeit Logo

Question

Physics Question on Electrostatics

Three capacitors of capacitances 25 μF, 30 μF and 45 μF are connected in parallel to a supply of 100 V. Energy stored in the above combination is E. When these capacitors are connected in series to the same supply, the stored energy is 9xE\frac{9}{x} E . The value of x is .................

Answer

In parallel combination: Potential difference is the same across all capacitors.

Energy=12(C1+C2+C3)V2\text{Energy} = \frac{1}{2}(C_1 + C_2 + C_3)V^2

=12(25+30+45)×(100)2×106=0.5=E= \frac{1}{2}(25 + 30 + 45) \times (100)^2 \times 10^{-6} = 0.5 = E

In series combination: Charge is the same on all.

1Cequ=1C1+1C2+1C3=125+130+145\frac{1}{C_{\text{equ}}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} = \frac{1}{25} + \frac{1}{30} + \frac{1}{45}

1Cequ=18+15+10450=43450    Cequ=45043\frac{1}{C_{\text{equ}}} = \frac{18 + 15 + 10}{450} = \frac{43}{450} \implies C_{\text{equ}} = \frac{450}{43}

Energy:

Energy=Q22C1+Q22C2+Q22C3\text{Energy} = \frac{Q^2}{2C_1} + \frac{Q^2}{2C_2} + \frac{Q^2}{2C_3}

=Q22[1C1+1C2+1C3]= \frac{Q^2}{2} \left[ \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} \right]

=(V×Cequ)22×Cequ×1Cequ=V2Cequ2= \frac{(V \times C_{\text{equ}})^2}{2 \times C_{\text{equ}}} \times \frac{1}{C_{\text{equ}}} = \frac{V^2C_{\text{equ}}}{2}

=(100)22×45043×106= \frac{(100)^2}{2} \times \frac{450}{43} \times 10^{-6}

=4.586=9x×0.5    x=86= \frac{4.5}{86} = \frac{9}{x} \times 0.5 \implies x = 86