Solveeit Logo

Question

Question: Three black bodies are radiating EM waves such that the higher intensity wavelengths are in the rati...

Three black bodies are radiating EM waves such that the higher intensity wavelengths are in the ratio λm1:λm2:λm3=1:(21)1/3:(3)1/2\lambda_{m1}:\lambda_{m2}:\lambda_{m3} = 1:(21)^{1/3}:(3)^{1/2}. Which of the these is true for the temperatures?

A

T1>T3>T2T_1 > T_3 > T_2

B

T1>T2>T3T_1 > T_2 > T_3

C

T3>T2>T1T_3 > T_2 > T_1

D

T3>T1>T2T_3 > T_1 > T_2

Answer

T1>T3>T2T_1 > T_3 > T_2

Explanation

Solution

For a black body, Wien’s displacement law gives

λmT=bT=bλm\lambda_m T = b \quad \Rightarrow \quad T = \frac{b}{\lambda_m}

Thus temperature is inversely proportional to λm\lambda_m. Given the ratios

λm1:λm2:λm3=1:2113:312\lambda_{m1} : \lambda_{m2} : \lambda_{m3} = 1 : 21^{\frac{1}{3}} : 3^{\frac{1}{2}},

we approximate:

21132.76,3121.7321^{\frac{1}{3}} \approx 2.76, \quad 3^{\frac{1}{2}} \approx 1.73.

This implies:

λm1=1,λm22.76,λm31.73\lambda_{m1} = 1,\quad \lambda_{m2} \approx 2.76,\quad \lambda_{m3} \approx 1.73.

Then the temperatures are:

T111=1,T212.760.362,T311.730.578T_1 \propto \frac{1}{1} = 1,\quad T_2 \propto \frac{1}{2.76} \approx 0.362,\quad T_3 \propto \frac{1}{1.73} \approx 0.578.

Thus, the ordering is:

T1>T3>T2T_1 > T_3 > T_2.