Solveeit Logo

Question

Mathematics Question on Probability and Statistics

Three balls are drawn at random from a bag containing 5 blue and 4 yellow balls. Let the random variables XX and YY respectively denote the number of blue and yellow balls. If Xˉ\bar{X} and Yˉ\bar{Y} are the means of XX and YY respectively, then 7Xˉ+4Yˉ7\bar{X} + 4\bar{Y} is equal to _____.

Answer

The total number of ways to select 3 balls from 9 is:
(93)=84.\binom{9}{3} = 84.
The probabilities for X=rX = r (number of blue balls drawn) are:
P(X=r)=(5r)(43r)(93).P(X = r) = \frac{\binom{5}{r} \cdot \binom{4}{3-r}}{\binom{9}{3}}.
For r=0r = 0:
P(X=0)=(50)(43)84=1484=484.P(X = 0) = \frac{\binom{5}{0} \cdot \binom{4}{3}}{84} = \frac{1 \cdot 4}{84} = \frac{4}{84}.
For r=1r = 1:
P(X=1)=(51)(42)84=5684=3084.P(X = 1) = \frac{\binom{5}{1} \cdot \binom{4}{2}}{84} = \frac{5 \cdot 6}{84} = \frac{30}{84}.
For r=2r = 2:
P(X=2)=(52)(41)84=10484=4084.P(X = 2) = \frac{\binom{5}{2} \cdot \binom{4}{1}}{84} = \frac{10 \cdot 4}{84} = \frac{40}{84}.
For r=3r = 3:
P(X=3)=(53)(40)84=10184=1084.P(X = 3) = \frac{\binom{5}{3} \cdot \binom{4}{0}}{84} = \frac{10 \cdot 1}{84} = \frac{10}{84}.
The mean of XX is:
X=r=03rP(X=r)=0484+13084+24084+31084.\overline{X} = \sum_{r=0}^3 r \cdot P(X = r) = 0 \cdot \frac{4}{84} + 1 \cdot \frac{30}{84} + 2 \cdot \frac{40}{84} + 3 \cdot \frac{10}{84}.
X=30+80+3084=14084=53.\overline{X} = \frac{30 + 80 + 30}{84} = \frac{140}{84} = \frac{5}{3}.
Now, compute 7X7\overline{X}:
7X=753=353.7\overline{X} = 7 \cdot \frac{5}{3} = \frac{35}{3}.
Similarly, compute probabilities for Y=rY = r (number of yellow balls drawn):
P(Y=r)=P(X=3r).P(Y = r) = P(X = 3 - r).
The mean of YY is:
Y=3X=353=43.\overline{Y} = 3 - \overline{X} = 3 - \frac{5}{3} = \frac{4}{3}.
Now, compute 4Y4\overline{Y}:
4Y=443=163.4\overline{Y} = 4 \cdot \frac{4}{3} = \frac{16}{3}.
Finally, compute 7X+4Y7\overline{X} + 4\overline{Y}:
7X+4Y=353+163=513=17.7\overline{X} + 4\overline{Y} = \frac{35}{3} + \frac{16}{3} = \frac{51}{3} = 17.
Final Answer: 17.