Solveeit Logo

Question

Question: Calculate the difference in net stabilisation energies (in kJ mol$^{-1}$) of $Fe^{2+}$ complexes wit...

Calculate the difference in net stabilisation energies (in kJ mol1^{-1}) of Fe2+Fe^{2+} complexes with CNCN^- ligands (Δ0\Delta_0 = 25000 cm1^{-1}) and with H2OH_2O ligands (Δ0\Delta_0 = 10000 cm1^{-1}). Given that the pairing energy, P = 15000 cm1^{-1} for Fe2+Fe^{2+} ion for both the complexes.

(Given that h = 6 x 103410^{-34} J sec., Avogadro Number = 6 x 102310^{23}, Speed of light in vaccum = 3 x 10810^8 m sec1^{-1}).

Answer

-280.80

Explanation

Solution

The problem asks to calculate the difference in net stabilization energies (in kJ mol1^{-1}) of two Fe2+Fe^{2+} complexes: one with CNCN^- ligands and another with H2OH_2O ligands.

1. Determine the electronic configuration of Fe2+Fe^{2+}: Iron (Fe) has atomic number 26. Its electronic configuration is [Ar]3d64s2[Ar] 3d^6 4s^2. Fe2+Fe^{2+} is formed by losing the two 4s electrons, so its electronic configuration is [Ar]3d6[Ar] 3d^6. We need to consider the d6d^6 configuration in an octahedral crystal field.

2. Calculate the Crystal Field Stabilization Energy (CFSE) for each complex: The general formula for CFSE in an octahedral complex, including pairing energy, is: CFSEnet=[0.4×nt2g+0.6×neg]Δ0+mP\text{CFSE}_{\text{net}} = [-0.4 \times n_{t2g} + 0.6 \times n_{eg}] \Delta_0 + mP where: nt2gn_{t2g} = number of electrons in t2gt_{2g} orbitals negn_{eg} = number of electrons in ege_g orbitals Δ0\Delta_0 = crystal field splitting energy PP = pairing energy mm = number of extra electron pairs formed in the complex compared to the free ion.

For a free d6d^6 ion, according to Hund's rule, there are 4 unpaired electrons and 1 paired electron (1 pair).

a) Fe2+Fe^{2+} complex with CNCN^- ligands (e.g., [Fe(CN)6]4[Fe(CN)_6]^{4-}): Given: Δ0=25000 cm1\Delta_0 = 25000 \text{ cm}^{-1}, P=15000 cm1P = 15000 \text{ cm}^{-1}. Since Δ0>P\Delta_0 > P (25000 cm1>15000 cm125000 \text{ cm}^{-1} > 15000 \text{ cm}^{-1}), CNCN^- is a strong field ligand, and the complex will be low spin. For a d6d^6 low spin configuration in an octahedral field, all 6 electrons will occupy the t2gt_{2g} orbitals before any go into ege_g. Electronic configuration: t2g6eg0t_{2g}^6 e_g^0. nt2g=6n_{t2g} = 6, neg=0n_{eg} = 0. In t2g6eg0t_{2g}^6 e_g^0, all 6 electrons are paired, resulting in 3 pairs. Number of extra pairs (mm) = (Pairs in complex) - (Pairs in free ion) = 3 - 1 = 2.

CFSECN=[0.4×6+0.6×0]Δ0+2P\text{CFSE}_{\text{CN}} = [-0.4 \times 6 + 0.6 \times 0] \Delta_0 + 2P CFSECN=2.4Δ0+2P\text{CFSE}_{\text{CN}} = -2.4 \Delta_0 + 2P CFSECN=2.4×(25000 cm1)+2×(15000 cm1)\text{CFSE}_{\text{CN}} = -2.4 \times (25000 \text{ cm}^{-1}) + 2 \times (15000 \text{ cm}^{-1}) CFSECN=60000 cm1+30000 cm1\text{CFSE}_{\text{CN}} = -60000 \text{ cm}^{-1} + 30000 \text{ cm}^{-1} CFSECN=30000 cm1\text{CFSE}_{\text{CN}} = -30000 \text{ cm}^{-1}

b) Fe2+Fe^{2+} complex with H2OH_2O ligands (e.g., [Fe(H2O)6]2+[Fe(H_2O)_6]^{2+}): Given: Δ0=10000 cm1\Delta_0 = 10000 \text{ cm}^{-1}, P=15000 cm1P = 15000 \text{ cm}^{-1}. Since Δ0<P\Delta_0 < P (10000 cm1<15000 cm110000 \text{ cm}^{-1} < 15000 \text{ cm}^{-1}), H2OH_2O is a weak field ligand, and the complex will be high spin. For a d6d^6 high spin configuration in an octahedral field, electrons will singly occupy all t2gt_{2g} and ege_g orbitals before pairing up. Electronic configuration: t2g4eg2t_{2g}^4 e_g^2. nt2g=4n_{t2g} = 4, neg=2n_{eg} = 2. In t2g4eg2t_{2g}^4 e_g^2, there is 1 pair in t2gt_{2g} and 4 unpaired electrons (2 in t2gt_{2g} and 2 in ege_g). So, 1 pair in total. Number of extra pairs (mm) = (Pairs in complex) - (Pairs in free ion) = 1 - 1 = 0.

CFSEH2O=[0.4×4+0.6×2]Δ0+0P\text{CFSE}_{\text{H2O}} = [-0.4 \times 4 + 0.6 \times 2] \Delta_0 + 0P CFSEH2O=[1.6+1.2]Δ0\text{CFSE}_{\text{H2O}} = [-1.6 + 1.2] \Delta_0 CFSEH2O=0.4Δ0\text{CFSE}_{\text{H2O}} = -0.4 \Delta_0 CFSEH2O=0.4×(10000 cm1)\text{CFSE}_{\text{H2O}} = -0.4 \times (10000 \text{ cm}^{-1}) CFSEH2O=4000 cm1\text{CFSE}_{\text{H2O}} = -4000 \text{ cm}^{-1}

3. Calculate the difference in net stabilization energies: Difference = CFSECNCFSEH2O\text{CFSE}_{\text{CN}} - \text{CFSE}_{\text{H2O}} Difference = (30000 cm1)(4000 cm1)(-30000 \text{ cm}^{-1}) - (-4000 \text{ cm}^{-1}) Difference = 30000 cm1+4000 cm1-30000 \text{ cm}^{-1} + 4000 \text{ cm}^{-1} Difference = 26000 cm1-26000 \text{ cm}^{-1}

4. Convert the difference from cm1^{-1} to kJ mol1^{-1}: We use the relationship E=hcνˉE = h c \bar{\nu}, where νˉ\bar{\nu} is the wavenumber in m1^{-1}. Given νˉ\bar{\nu} in cm1^{-1}, we convert it to m1^{-1} by multiplying by 100 (1 m=100 cm1 \text{ m} = 100 \text{ cm}). Energy per molecule in Joules: E(J/molecule)=h×c×(wavenumber in cm1×100)E (\text{J/molecule}) = h \times c \times (\text{wavenumber in cm}^{-1} \times 100) E(J/molecule)=(6×1034 J s)×(3×108 m s1)×(26000 cm1×100 cm/m)E (\text{J/molecule}) = (6 \times 10^{-34} \text{ J s}) \times (3 \times 10^8 \text{ m s}^{-1}) \times (-26000 \text{ cm}^{-1} \times 100 \text{ cm/m}) E(J/molecule)=(18×1026 J m)×(2.6×106 m1)E (\text{J/molecule}) = (18 \times 10^{-26} \text{ J m}) \times (-2.6 \times 10^6 \text{ m}^{-1}) E(J/molecule)=46.8×1020 J/moleculeE (\text{J/molecule}) = -46.8 \times 10^{-20} \text{ J/molecule}

Now, convert to energy per mole using Avogadro's number (NA=6×1023 mol1N_A = 6 \times 10^{23} \text{ mol}^{-1}): E(J/mol)=E(J/molecule)×NAE (\text{J/mol}) = E (\text{J/molecule}) \times N_A E(J/mol)=(46.8×1020 J/molecule)×(6×1023 molecules/mol)E (\text{J/mol}) = (-46.8 \times 10^{-20} \text{ J/molecule}) \times (6 \times 10^{23} \text{ molecules/mol}) E(J/mol)=(46.8×6)×10(20+23) J/molE (\text{J/mol}) = (-46.8 \times 6) \times 10^{(-20+23)} \text{ J/mol} E(J/mol)=280.8×103 J/molE (\text{J/mol}) = -280.8 \times 10^3 \text{ J/mol} E(J/mol)=280800 J/molE (\text{J/mol}) = -280800 \text{ J/mol}

Finally, convert to kJ mol1^{-1}: E(kJ/mol)=280800 J/mol1000 J/kJE (\text{kJ/mol}) = \frac{-280800 \text{ J/mol}}{1000 \text{ J/kJ}} E(kJ/mol)=280.8 kJ/molE (\text{kJ/mol}) = -280.8 \text{ kJ/mol}

The difference in net stabilization energies is -280.8 kJ mol1^{-1}.