Solveeit Logo

Question

Question: A conducting wire bent in the form of a parabola $y^2 = x$, is carrying a current /= 1 A in anticloc...

A conducting wire bent in the form of a parabola y2=xy^2 = x, is carrying a current /= 1 A in anticlockwise sense as shown. This wire is placed in a uniform magnetic field B=2k^\overrightarrow{B} = -2\hat{k} tesla. The unit vector in the direction of force is

A

3i^+4j^3\hat{i} + 4\hat{j}

Answer

i^+2j^5\frac{\hat{i} + 2\hat{j}}{\sqrt{5}}

Explanation

Solution

The magnetic force on a current-carrying wire in a uniform magnetic field is F=I(L×B)\vec{F} = I (\vec{L} \times \vec{B}). The effective displacement vector L\vec{L} for the wire segment from O(0,0) to b(4,-2) is 4i^2j^4\hat{i} - 2\hat{j}. Given I=1I=1 A and B=2k^\vec{B} = -2\hat{k} T.

Calculate the cross product: L×B=(4i^2j^)×(2k^)=8(i^×k^)+4(j^×k^)=8(j^)+4(i^)=4i^+8j^\vec{L} \times \vec{B} = (4\hat{i} - 2\hat{j}) \times (-2\hat{k}) = -8(\hat{i} \times \hat{k}) + 4(\hat{j} \times \hat{k}) = -8(-\hat{j}) + 4(\hat{i}) = 4\hat{i} + 8\hat{j}.

So, F=1×(4i^+8j^)=4i^+8j^\vec{F} = 1 \times (4\hat{i} + 8\hat{j}) = 4\hat{i} + 8\hat{j}.

The unit vector in the direction of force is F^=FF=4i^+8j^42+82=4i^+8j^16+64=4i^+8j^80=4i^+8j^45=i^+2j^5\hat{F} = \frac{\vec{F}}{|\vec{F}|} = \frac{4\hat{i} + 8\hat{j}}{\sqrt{4^2 + 8^2}} = \frac{4\hat{i} + 8\hat{j}}{\sqrt{16+64}} = \frac{4\hat{i} + 8\hat{j}}{\sqrt{80}} = \frac{4\hat{i} + 8\hat{j}}{4\sqrt{5}} = \frac{\hat{i} + 2\hat{j}}{\sqrt{5}}.