Solveeit Logo

Question

Question: There is an equiconvex glass lens with radius of each face as *R* and \({ } _ { a } \mu _ { g } = 3 ...

There is an equiconvex glass lens with radius of each face as R and aμg=3/2{ } _ { a } \mu _ { g } = 3 / 2andaμw=4/3{ } _ { a } \mu _ { w } = 4 / 3. If there is water in object space and air in image space, then the focal length is

A

2R

B

R

C

3 *R/*2

D

R2R ^ { 2 }

Answer

3 *R/*2

Explanation

Solution

Consider the refraction of the first surface i.e. refraction from rarer medium to denser medium

(32)(43)R=43+32v1v1=9R\frac { \left( \frac { 3 } { 2 } \right) - \left( \frac { 4 } { 3 } \right) } { R } = \frac { \frac { 4 } { 3 } } { \infty } + \frac { \frac { 3 } { 2 } } { v _ { 1 } } \Rightarrow v _ { 1 } = 9 R

Now consider the refraction at the second surface of the lens i.e. refraction from denser medium to rarer medium

132R=329R+1v2v2=(32)R\frac { 1 - \frac { 3 } { 2 } } { - R } = - \frac { \frac { 3 } { 2 } } { 9 R } + \frac { 1 } { v _ { 2 } } \Rightarrow v _ { 2 } = \left( \frac { 3 } { 2 } \right) R

The image will be formed at a distance do 32R\frac { 3 } { 2 } R. This is equal to the focal length of the lens.