Solveeit Logo

Question

Question: There is a polynomial function given in which if \( f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}...

There is a polynomial function given in which if f(x)=x11+x9x7+x3+1f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}+{{x}^{3}}+1 and f(sin1(sin8))=αf\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha , α\alpha is a constant, the value of f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) is equal to:
Note: consider 8 in radians.
(a) α\alpha
(b) α2\alpha -2
(c) α+2\alpha +2
(d) 2α2-\alpha

Explanation

Solution

Hint: First of all convert 8 which is in radians to degrees then the angle in degrees will be 458.36. The angle that we have got in degree lie in second quadrant so we can write sin8\sin 8 as sin(3π8)\sin \left( 3\pi -8 \right) and we can write tan8\tan 8 as tan(3π8)-\tan \left( 3\pi -8 \right) . The value of sin1(sin(3π8)){{\sin }^{-1}}\left( \sin \left( 3\pi -8 \right) \right) will be 3π83\pi -8 and the value of tan1(tan(3π8)){{\tan }^{-1}}\left( -\tan \left( 3\pi -8 \right) \right) will be (3π8)-\left( 3\pi -8 \right) . It is given that f(sin1(sin8))=αf\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha then we can write it as f(3π8)=αf\left( 3\pi -8 \right)=\alpha and we can write f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) as f((3π8))f\left( -\left( 3\pi -8 \right) \right) . Let us assume 3π83\pi -8 as t then substitute t in f(x)f\left( x \right) and –t in f(x)f\left( x \right) and add them. After adding f(t)&f(t)f\left( t \right)\And f\left( -t \right) you will get 2 then substitute f(t)f\left( t \right) as α\alpha then you will get the value of f(t)f\left( -t \right) or f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) .

Complete step-by-step answer:
A polynomial function given in the question is:
f(x)=x11+x9x7+x3+1f\left( x \right)={{x}^{11}}+{{x}^{9}}-{{x}^{7}}+{{x}^{3}}+1
It is also given that f(sin1(sin8))=αf\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha and we are asked to find the value of f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) .
As the angle of sine is given in radians which is 8 radians so converting the radians into degrees we get,
8(1800π)8\left( \dfrac{{{180}^{0}}}{\pi } \right)
=8(18003.14) =458.360 \begin{aligned} & =8\left( \dfrac{{{180}^{0}}}{3.14} \right) \\\ & ={{458.36}^{0}} \\\ \end{aligned}
The angle that we have calculated above lies in second quadrant so we can write sine as:
sin8=sin(3π8)\sin 8=\sin \left( 3\pi -8 \right)
Taking inverse of sine on both the sides we get,
sin1(sin8)=sin1(sin(3π8)) sin1(sin8)=3π8 \begin{aligned} & {{\sin }^{-1}}\left( \sin 8 \right)={{\sin }^{-1}}\left( \sin \left( 3\pi -8 \right) \right) \\\ & \Rightarrow {{\sin }^{-1}}\left( \sin 8 \right)=3\pi -8 \\\ \end{aligned}
Similarly, we can write tan8\tan 8 as:
tan8=tan(3π8)\tan 8=-\tan \left( 3\pi -8 \right)
Taking inverse of tan on both the sides we get,
tan1tan8=tan1(tan(3π8)) tan1tan8=(3π8) \begin{aligned} & {{\tan }^{-1}}\tan 8={{\tan }^{-1}}\left( -\tan \left( 3\pi -8 \right) \right) \\\ & \Rightarrow {{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) \\\ \end{aligned}
It is given that:
f(sin1(sin8))=αf\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha
Substituting sin1(sin8){{\sin }^{-1}}\left( \sin 8 \right) as 3π83\pi -8 in the above equation we get,
f(3π8)=αf\left( 3\pi -8 \right)=\alpha ……… eq. (1)
Substituting tan1tan8=(3π8){{\tan }^{-1}}\tan 8=-\left( 3\pi -8 \right) in f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) we get,
f((3π8))f\left( -\left( 3\pi -8 \right) \right)
If we assume f(3π8)f\left( 3\pi -8 \right) as f(t)f\left( t \right) then f((3π8))f\left( -\left( 3\pi -8 \right) \right) will be f(t)f\left( -t \right) . Now, substituting the value of “t” in place of x in f(x)f\left( x \right) we get,
f(t)=t11+t9t7+t3+1f\left( t \right)={{t}^{11}}+{{t}^{9}}-{{t}^{7}}+{{t}^{3}}+1 …………. Eq. (2)
Substituting the value of –t in place of x in f(x)f\left( x \right) we get,
f(t)=t11t9+t7t3+1f\left( -t \right)=-{{t}^{11}}-{{t}^{9}}+{{t}^{7}}-{{t}^{3}}+1 ………. Eq. (3)
Adding eq. (1) and eq. (2) we get,
f(t)+f(t)=2f\left( t \right)+f\left( -t \right)=2
Now, replacing t with 3π83\pi -8 in the above equation we get,
f(3π8)+f((3πt))=2f\left( 3\pi -8 \right)+f\left( -\left( 3\pi -t \right) \right)=2
Using the relation in eq. (2) and substituting in the above equation we get,
α+f((3π8))=2 f((3π8))=2α \begin{aligned} & \alpha +f\left( -\left( 3\pi -8 \right) \right)=2 \\\ & \Rightarrow f\left( -\left( 3\pi -8 \right) \right)=2-\alpha \\\ \end{aligned}
Hence, the correct option (d).

Note: You might think of solving this problem as follows:
In the function f(sin1(sin8))=αf\left( {{\sin }^{-1}}\left( \sin 8 \right) \right)=\alpha , the value of sin1(sin8){{\sin }^{-1}}\left( \sin 8 \right) is 8 then f(8)=αf\left( 8 \right)=\alpha We have to find the value of the function f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) , in this function the value of tan1(tan8){{\tan }^{-1}}\left( \tan 8 \right) is 8 so the value of this function f(tan1(tan8))f\left( {{\tan }^{-1}}\left( \tan 8 \right) \right) is f(8)f\left( 8 \right) and which is equal to α\alpha .
In the above solution, the wrong step is that we cannot write tan1(tan8){{\tan }^{-1}}\left( \tan 8 \right) as 8 because the angle given us in radians and as we have shown above that this angle is of 458.360{{458.36}^{0}} which lies in the second quadrant so basically we should write tan8\tan 8 as tan(3π8)-\tan \left( 3\pi -8 \right) and then proceed.