Solveeit Logo

Question

Question: There are two vectors \(\overset{\rightarrow}{A} = \widehat{i} + \widehat{j} + \widehat{k}\)and \(\o...

There are two vectors A=i^+j^+k^\overset{\rightarrow}{A} = \widehat{i} + \widehat{j} + \widehat{k}and B=i^j^+k^\overset{\rightarrow}{B} = \widehat{i} - \widehat{j} + \widehat{k}, then component of A\overset{\rightarrow}{A} along B\overset{\rightarrow}{B}

A

(a) 13\frac{1}{\sqrt{3}} ( i^j^+k^\widehat{i} - \widehat{j} + \widehat{k})

A

(b) 13\frac{1}{\sqrt{3}} ( i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k})

A

(c) 3\sqrt{3} ( i^+j^+k^\widehat{i} + \widehat{j} + \widehat{k})

A

(d) (i^j^+k^\widehat{i} - \widehat{j} + \widehat{k})

Explanation

Solution

(b)

Component of A\overset{\rightarrow}{A}along B\overset{\rightarrow}{B}= (A.BB)B^\left( \frac{\overset{\rightarrow}{A}.\overset{\rightarrow}{B}}{|\overset{\rightarrow}{B}|} \right)\widehat{B}