Solveeit Logo

Question

Question: There are two possible values of \[A\] in the Solution of the Matrix Equation \[{\left[ {\begin{ar...

There are two possible values of AA in the Solution of the Matrix Equation

{2A + 1}&{ - 5} \\\ { - 4}&A; \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {A - 5}&B; \\\ {2A - 2}&C; \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {14}&D; \\\ E&F; \end{array}} \right]$$ Where $A,B,C,D,E,F$ are Real Numbers. The absolute value of the difference between these two solutions is $ a)\dfrac{8}{3} \\\ b)\dfrac{{11}}{3} \\\ c)\dfrac{1}{3} \\\ d)\dfrac{{19}}{3} \\\ $
Explanation

Solution

To solve this type of problem we should know about the Inverse of the matrix. Consider a matrix AA, The inverse A1{A^{ - 1}} of the Matrix AA can be found out by using the Formula
A1=1AadjA{A^{ - 1}} = \dfrac{1}{{|A|}}adjA
Where A|A| is the determinant of a matrix AA
adjAadjA is the adjugate or adjoint of a matrix AA.
Consider a Square Matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right]
The adjugate of this Matrix AA is \left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right]

Complete step by step answer:
In this problem, we are going to find the two possible values of AA. After finding the Values of AA, we calculate the difference between the two values of AA.
Let us find the two Possible values of AA.
It is given in the problem that
{\left[ {\begin{array}{*{20}{c}} {2A + 1}&{ - 5} \\\ { - 4}&A; \end{array}} \right]^{ - 1}}\left[ {\begin{array}{*{20}{c}} {A - 5}&B; \\\ {2A - 2}&C; \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {14}&D; \\\ E&F; \end{array}} \right]\xrightarrow[{\begin{array}{*{20}{c}} {}&{} \end{array}}]{} (1)
We know the formula for finding the inverse of a matrix AA is
A1=1AadjA{A^{ - 1}} = \dfrac{1}{{|A|}}adjA
Consider a matrix A = \left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right]
We know A=adbc|A| = ad - bc
{\left[ {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right]^{ - 1}} = \dfrac{1}{{ad - bc}}adjA
= \dfrac{1}{{ad - bc}}\left[ {\begin{array}{*{20}{c}} d&{ - b} \\\ { - c}&a; \end{array}} \right]

{2A + 1}&{ - 5} \\\ { - 4}&A; \end{array}} \right]^{ - 1}}$$ Substitute $a = 2A + 1,b = - 5,c = - 4,d = A$ ${\left[ {\begin{array}{*{20}{c}} {2A + 1}&{ - 5} \\\ { - 4}&A; \end{array}} \right]^{ - 1}} = \dfrac{1}{{A(2A + 1) - 20}}\left[ {\begin{array}{*{20}{c}} A&5 \\\ 4&{2A + 1} \end{array}} \right]$ $$ = \dfrac{1}{{2{A^2} + A - 20}}\left[ {\begin{array}{*{20}{c}} A&5 \\\ 4&{2A + 1} \end{array}} \right]$$ Substitute the above values in Equation $(1)$ $$\dfrac{1}{{2{A^2} + A - 20}} \left[ {\begin{array}{*{20}{c}} A&5 \\\ 4&{2A + 1} \end{array}} \right] \left[ {\begin{array}{*{20}{c}} {A - 5}&B; \\\ {2A - 2}&C; \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {14}&D; \\\ E&F; \end{array}} \right]$$ Multiply the above two matrices on the left-hand side. $\dfrac{1}{{2{A^2} + A - 20}} \left[ {\begin{array}{*{20}{c}} {A(A - 5) + 5(2A - 2)}&{AB + 5C} \\\ {4(A - 5) + (2A + 1)(2A - 2)}&{4B + (2A + 1)C} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {14}&D; \\\ E&F; \end{array}} \right]$ Form an Equation by taking the first element of Matrix on both Sides $$\dfrac{1}{{2{A^2} + A - 20}}(A(A - 5) + 5(2A - 2)) = 14$$ Simplify the above equation $$A(A - 5) + 5(2A - 2) = 14(2{A^2} + A - 20)$$ We can simplify the above equation again $ {A^2} - 5A + 10A - 10 = 28{A^2} + 14A - 280 \\\ 28{A^2} - {A^2} + 14A - 5A - 280 + 10 = 0 \\\ 27{A^2} + 9A - 270 = 0 \\\ 9(3{A^2} + A - 30) = 0 \\\ 3{A^2} + A - 30 = 0 \\\ $ Simplify the above quadratic equation $ 3{A^2} - 9A + 10A - 30 = 0 \\\ 3A(A - 3) + 10(A - 3) = 0 \\\ (A - 3)(3A + 10) = 0 \\\ (A - 3) = 0,(3A + 10) = 0 \\\ A = 3,A = \dfrac{{ - 10}}{3} \\\ $ The possible values of $A$ are $3$ and $\dfrac{{ - 10}}{3}$ The difference between these two solutions $ = 3 - (\dfrac{{ - 10}}{3})$ $ = 3 + \dfrac{{10}}{3} \\\ = \dfrac{{9 + 10}}{3} = \dfrac{{19}}{3} \\\ $ Its absolute value is $\dfrac{{19}}{3}$ **So, the correct answer is “Option d”.** **Note:** We should find the adjugate of the matrix correctly by interchanging the elements in the diagonal and change the Sign of the remaining elements. If we made any mistakes in the change of sign, the answer will be wrong. To solve this problem easily, we should know the Inverse of the Matrix Formula $${A^{ - 1}} = \dfrac{1}{{|A|}}adjA$$ Where $|A|$ is the determinant of a matrix $A$, $adjA$ is the adjugate or adjoint of a matrix $A$.