Question
Question: There are two possible value of A in the solution of the matrix equation \(\begin{bmatrix} 2A + 1 & ...
There are two possible value of A in the solution of the matrix equation $\begin{bmatrix} 2A + 1 & - 5 \
- 4 & A \end{bmatrix}^{- 1}\begin{bmatrix} A - 5 & B \ 2A - 2 & C \end{bmatrix}=\begin{bmatrix} 14 & D \ E & F \end{bmatrix}$, where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is:
A
38
B
311
C
31
D
319
Answer
319
Explanation
Solution
$\begin{bmatrix} 2A + 1 & - 5 \
- 4 & A \end{bmatrix}^{- 1}= \begin{bmatrix} A & 5 \ 4 & 2A + 1 \end{bmatrix}$
So 2A2+A−201[A−52A−2BC]
= [14EDF] 2A2+A−201 [A(A−5)+5(2A−2)4(A−5)+(2A+1)(2A−2)AB+5C4B+C(2A+1)]= [14EDF]
so 2A2+A−20A2+5A−10= 14 Ž A = 3, 3−10