Solveeit Logo

Question

Question: There are two possible value of A in the solution of the matrix equation \(\begin{bmatrix} 2A + 1 & ...

There are two possible value of A in the solution of the matrix equation $\begin{bmatrix} 2A + 1 & - 5 \

  • 4 & A \end{bmatrix}^{- 1} \begin{bmatrix} A - 5 & B \ 2A - 2 & C \end{bmatrix}== \begin{bmatrix} 14 & D \ E & F \end{bmatrix}$, where A, B, C, D, E, F are real numbers. The absolute value of the difference of these two solutions, is:
A

83\frac{8}{3}

B

113\frac{11}{3}

C

13\frac{1}{3}

D

193\frac{19}{3}

Answer

193\frac{19}{3}

Explanation

Solution

$\begin{bmatrix} 2A + 1 & - 5 \

  • 4 & A \end{bmatrix}^{- 1}= ![](https://cdn.pureessence.tech/canvas_573.png?top_left_x=499&top_left_y=1789&width=300&height=142)\begin{bmatrix} A & 5 \ 4 & 2A + 1 \end{bmatrix}$

So 12A2+A20\frac{1}{2A^{2} + A - 20}[A5B2A2C]\begin{bmatrix} A - 5 & B \\ 2A - 2 & C \end{bmatrix}

= [14DEF]\left[ \begin{array} { c c } 14 & \mathrm { D } \\ \mathrm { E } & \mathrm { F } \end{array} \right] 12A2+A20\frac{1}{2A^{2} + A - 20} [A(A5)+5(2A2)AB+5C4(A5)+(2A+1)(2A2)4B+C(2A+1)]\begin{bmatrix} A(A - 5) + 5(2A - 2) & AB + 5C \\ 4(A - 5) + (2A + 1)(2A - 2) & 4B + C(2A + 1) \end{bmatrix}= [14DEF]\begin{bmatrix} 14 & D \\ E & F \end{bmatrix}

so A2+5A102A2+A20\frac{A^{2} + 5A - 10}{2A^{2} + A - 20}= 14 Ž A = 3, 103\frac{- 10}{3}