Solveeit Logo

Question

Question: There are two circles whose equations are \(x ^ { 2 } + y ^ { 2 } = 9\) and ![](https://cdn.pureesse...

There are two circles whose equations are x2+y2=9x ^ { 2 } + y ^ { 2 } = 9 and If the two circles have exactly two common tangents, then the number of possible values of n is

A

2

B

8

C

9

D

None of these

Answer

9

Explanation

Solution

For x2+y2=9x ^ { 2 } + y ^ { 2 } = 9, the centre = (0, 0) and the radius = 3

For x2+y28x6y+n2=0x ^ { 2 } + y ^ { 2 } - 8 x - 6 y + n ^ { 2 } = 0.

The centre = (4, 3) and the radius =(4)2+(3)2n2= \sqrt { ( 4 ) ^ { 2 } + ( 3 ) ^ { 2 } - n ^ { 2 } }

\therefore 42+32n2>04 ^ { 2 } + 3 ^ { 2 } - n ^ { 2 } > 0 or n2<52n ^ { 2 } < 5 ^ { 2 } or

Circles should cut to have exactly two common tangents.

So, \therefore 3+25n2>(4)2+(3)23 + \sqrt { 25 - n ^ { 2 } } > \sqrt { ( 4 ) ^ { 2 } + ( 3 ) ^ { 2 } } or

25n2>2\sqrt { 25 - n ^ { 2 } } > 2 or 25n2>425 - n ^ { 2 } > 4

\therefore n2<21n ^ { 2 } < 21 or 21<n<21- \sqrt { 21 } < n < \sqrt { 21 }

Therefore, common values of n should satisfy

21<n<21- \sqrt { 21 } < n < \sqrt { 21 }

But nZn \in Z, So, .

\therefore Number of possible values of n = 9