Solveeit Logo

Question

Question: There are n small elastic balls placed at rest on a smooth horizontal surface which is circular of r...

There are n small elastic balls placed at rest on a smooth horizontal surface which is circular of radius R at other end. The masses of the balls are M, M2,M22,M23,.......M2n1\frac{M}{2},\frac{M}{2^{2}},\frac{M}{2^{3}},.......\frac{M}{2^{n - 1}}respectively. The least velocity which should be provided to the first ball of mass M such that nth ball completes vertical circle is

A

(34)n15gr\left( \frac{3}{4} \right)^{n - 1}\sqrt{5gr}

B

(43)ngr\left( \frac{4}{3} \right)^{n}\sqrt{gr}

C

(43)n15gr\left( \frac{4}{3} \right)^{n - 1}\sqrt{5gr}

D

gr\sqrt{gr}

Answer

(34)n15gr\left( \frac{3}{4} \right)^{n - 1}\sqrt{5gr}

Explanation

Solution

Let u be the speed of first ball, then for a strike between first and second ball

Mv = Mv1 + Mv22\frac{Mv_{2}}{2} (i)

and12Mv2=12Mv12+12M2v22\frac{1}{2}Mv^{2} = \frac{1}{2}Mv_{1}^{2} + \frac{1}{2}\frac{M}{2}v_{2}^{2} (ii) solving (i) and (ii)

v2 = 43u\frac{4}{3}u

similarly for second and third ball

M2×43u=M2v2+M22v3\frac{M}{2} \times \frac{4}{3}u = \frac{M}{2}v_{2} + \frac{M}{2^{2}}v_{3}

and12M2(u2)2+12M(2)2(u3)2\frac{1}{2}\frac{M}{2}\left( u_{2} \right)^{2} + \frac{1}{2}\frac{M}{(2)^{2}}\left( u_{3} \right)^{2}

solving v3 = (ar)u\left( {\overrightarrow{a}}_{r} \right)u

in this way vn = (43)n1u\left( \frac{4}{3} \right)^{n - 1}u

For nth bal to loop vn = 5gR\sqrt{5gR}

i.e., (43)n1u=5gR\left( \frac{4}{3} \right)^{n - 1}u = \sqrt{5gR}

or u = (34)n15gR\left( \frac{3}{4} \right)^{n - 1}\sqrt{5gR}