Solveeit Logo

Question

Physics Question on work, energy and power

There are n elastic balls placed on a smooth horizontal plane. The masses of the balls are m,m2\frac{m}{2},m22\frac{m}{2^2}........m2n1\frac{m}{2^{n-1}} respectively. If the first ball hits the second ball with velocity V0, then the velocity of the nth ball will be,

A

43V0\frac{4}{3}V_0

B

(43)nV0(\frac{4}{3})^{n}V_0

C

(43)n1V0(\frac{4}{3})^{n-1}V_0

D

V0

Answer

(43)n1V0(\frac{4}{3})^{n-1}V_0

Explanation

Solution

The correct answer is option (C): (43)n1V0(\frac{4}{3})^{n-1}V_0

v1=2m1v1m1m2+m1m2m1+m2v2v_1'=\frac{2m_1v_1}{m_1m_2}+\frac{m_1-m_2}{m_1+m_2}v_2

The velocity of the 2nd ball v2=0v_2=0

Let the velocity of the first ball v1=vv_1=v

The collision between the first and second ball v2=2mvm+m2=43vv_2'=\frac{2mv}{m+\frac{m}{2}}=\frac{4}{3}v

v3=43v3=(43)2vv_3'=\frac{4}{3}v_3=(\frac{4}{3})^2v

so, for n ball,

vn=43vn=43(n1)vv_n'=\frac{4}{3}v_n=\frac{4}{3}^{(n-1)}v