Solveeit Logo

Question

Question: There are n different objects 1, 2, 3,......n distributed at random in n places marked 1, 2, 3, .......

There are n different objects 1, 2, 3,......n distributed at random in n places marked 1, 2, 3, ......n. The probability that at least three of the objects occupy places corresponding to their number is

A

16\frac { 1 } { 6 }

B

56\frac { 5 } { 6 }

C

13\frac { 1 } { 3 }

D

None of these

Answer

16\frac { 1 } { 6 }

Explanation

Solution

Let EiE _ { i } denote the event that the object goes to the place, we have P(Ei)=(n1)!n!=1n,iP \left( E _ { i } \right) = \frac { ( n - 1 ) ! } { n ! } = \frac { 1 } { n } , \forall i

and P(EiEjEk)=(n3)!n!P \left( E _ { i } \cap E _ { j } \cap E _ { k } \right) = \frac { ( n - 3 ) ! } { n ! } for i<j<ki < j < k

Since we can choose 3 places out of n in nC3{ } ^ { n } C _ { 3 } ways

The probability of the required event is nC3(n3)!n!=16{ } ^ { n } C _ { 3 } \cdot \frac { ( n - 3 ) ! } { n ! } = \frac { 1 } { 6 }.