Solveeit Logo

Question

Mathematics Question on permutations and combinations

There are 55 letters and 55 different envelopes. The number of ways in which all the letters can be put in wrong envelope, is

A

119

B

44

C

59

D

40

Answer

44

Explanation

Solution

Required numbers
=5![111!+12!13!+14!=15!]=44=5 !\left[1-\frac{1}{1 !}+\frac{1}{2 !}-\frac{1}{3 !}+\frac{1}{4 !}=\frac{1}{5 !}\right]=44
if r(0rn)r(0 \leq r \leq n) objects occupy the original places and none of the remaining (nr)(n-r) objects occupies its original places then the number of such arrangements =nCr(nr)!={ }^{n} C_{r}(n-r) !
[111!+12!13!++(1)n21(nr)!]\left[1 \frac{1}{1 !}+\frac{1}{2 !}-\frac{1}{3 !}+\ldots+(-1)^{n-2} \frac{1}{(n-r) !}\right]