Solveeit Logo

Question

Question: There are 3 bags which are known to contain 2 white and 3 black balls; 4 white and 1 black balls and...

There are 3 bags which are known to contain 2 white and 3 black balls; 4 white and 1 black balls and 3 white and 7 black balls respectively. A ball is drawn at random from one of the bags and found to be a black ball. Then the probability that it was drawn from the bag containing the most black balls is

A

715\frac { 7 } { 15 }

B

519\frac { 5 } { 19 }

C

34\frac { 3 } { 4 }

D

None of these

Answer

715\frac { 7 } { 15 }

Explanation

Solution

Consider the following events:

AA \rightarrow Ball drawn is black; E1E _ { 1 } \rightarrow Bag I is chosen;

E2E _ { 2 } \rightarrow Bag II is chosen and E3E _ { 3 } \rightarrow Bag III is chosen.

Then P(E1)=(E2)=P(E3)=13,P(AE1)=35P \left( E _ { 1 } \right) = \left( E _ { 2 } \right) = P \left( E _ { 3 } \right) = \frac { 1 } { 3 } , P \left( \frac { A } { E _ { 1 } } \right) = \frac { 3 } { 5 }.

P(AE2)=15,P(AE3)=710P \left( \frac { A } { E _ { 2 } } \right) = \frac { 1 } { 5 } , P \left( \frac { A } { E _ { 3 } } \right) = \frac { 7 } { 10 }

Required probability =P(E3A)= P \left( \frac { E _ { 3 } } { A } \right)

=P(E3)P(A/E3)P(E1)P(A/E1)+P(E2)P(A/E2)+P(E3)P(A/E3)=715= \frac { P \left( E _ { 3 } \right) P \left( A / E _ { 3 } \right) } { P \left( E _ { 1 } \right) P \left( A / E _ { 1 } \right) + P \left( E _ { 2 } \right) P \left( A / E _ { 2 } \right) + P \left( E _ { 3 } \right) P \left( A / E _ { 3 } \right) } = \frac { 7 } { 15 } .