Solveeit Logo

Question

Question: There are 10 machines of which exactly 3 are defective. The machines are tested one by one until all...

There are 10 machines of which exactly 3 are defective. The machines are tested one by one until all defective are identified. Then the probability that the last defective is tested in 6th attempt is

A
  1. 7C310C5\frac { { } ^ { 7 } \mathrm { C } _ { 3 } } { { } ^ { 10 } \mathrm { C } _ { 5 } }
B

357C310C5\frac { 3 } { 5 } \cdot \frac { { } ^ { 7 } \mathrm { C } _ { 3 } } { { } ^ { 10 } \mathrm { C } _ { 5 } }

C

157C310C5\frac { 1 } { 5 } \cdot \frac { { } ^ { 7 } \mathrm { C } _ { 3 } } { { } ^ { 10 } \mathrm { C } _ { 5 } }

D

Answer

357C310C5\frac { 3 } { 5 } \cdot \frac { { } ^ { 7 } \mathrm { C } _ { 3 } } { { } ^ { 10 } \mathrm { C } _ { 5 } }

Explanation

Solution

N(S) = 10C5 n(5) 3C2 7C3

P(5) = 3C27C310C5\frac { { } ^ { 3 } \mathrm { C } _ { 2 } \cdot { } ^ { 7 } \mathrm { C } _ { 3 } } { { } ^ { 10 } \mathrm { C } _ { 5 } } ; P(E1/E) = 1/5

∴ P(E∩E1) = P(5). P(E1/E).