Solveeit Logo

Question

Question: Evaluate the sum $\sum_{r=1}^{\infty} \frac{(2r-1)}{2^r}$...

Evaluate the sum r=1(2r1)2r\sum_{r=1}^{\infty} \frac{(2r-1)}{2^r}

Answer

3

Explanation

Solution

The sum is an arithmetico-geometric series. Let S=r=1(2r1)2rS = \sum_{r=1}^{\infty} \frac{(2r-1)}{2^r}.

Write out the series: S=12+34+58+716+S = \frac{1}{2} + \frac{3}{4} + \frac{5}{8} + \frac{7}{16} + \dots.

Multiply by the common ratio 12\frac{1}{2}: 12S=14+38+516+\frac{1}{2}S = \frac{1}{4} + \frac{3}{8} + \frac{5}{16} + \dots.

Subtract the second equation from the first: 12S=12+(3414)+(5838)+\frac{1}{2}S = \frac{1}{2} + \left(\frac{3}{4} - \frac{1}{4}\right) + \left(\frac{5}{8} - \frac{3}{8}\right) + \dots

This simplifies to 12S=12+24+28+216+=12+12+14+18+\frac{1}{2}S = \frac{1}{2} + \frac{2}{4} + \frac{2}{8} + \frac{2}{16} + \dots = \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots.

The terms 12+14+18+\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots form an infinite geometric series with first term a=12a=\frac{1}{2} and common ratio r=12r=\frac{1}{2}. Its sum is a1r=1/211/2=1\frac{a}{1-r} = \frac{1/2}{1-1/2} = 1.

So, 12S=12+1=32\frac{1}{2}S = \frac{1}{2} + 1 = \frac{3}{2}.

Multiplying by 2, we get S=3S = 3.