Solveeit Logo

Question

Question: The z component of the angular momentum of a particle whose position vector is \(\overrightarrow{r}\...

The z component of the angular momentum of a particle whose position vector is r\overrightarrow{r} with components x,y and z and linear momentum is P\overrightarrow{P} with components px, py and pz is

A

xpy – ypx

B

ypz-zpy

C

zpx xpz

D

xpy + ypx

Answer

xpy – ypx

Explanation

Solution

Here, r=xi^+yj^+zk^\overset{\rightarrow}{r} = x\widehat{i} + y\widehat{j} + z\widehat{k}

P=Pxi^+Pyj^+PzK^\overset{\rightarrow}{P} = P_{x}\widehat{i} + P_{y}\widehat{j} + P_{z}\widehat{K}

Let L=Lxi^+Lyj^+LzK^\overset{\rightarrow}{L} = L_{x}\widehat{i} + L_{y}\widehat{j} + L_{z}\widehat{K} …… (i)

As L=r×p\overset{\rightarrow}{L} = \overset{\rightarrow}{r} \times \overrightarrow{p}

=i^(ypZzpy)+j^(zpxxpZ)+k^(xpyypx)= \widehat{i}(yp_{Z} - zp_{y}) + \widehat{j}(zp_{x} - xp_{Z}) + \widehat{k}(xp_{y} - yp_{x}).(ii)

Comparing the coefficients of i^,j^\widehat{i},\widehat{j}and k^\widehat{k}in Eqs. (i) and (ii), we get

Lx=ypZzpYL_{x} = yp_{Z} - zp_{Y}

Ly=zpxxpzL_{y} = zp_{x} - xp_{z}

Lz=xpyypxL_{z} = xp_{y} - yp_{x}