Solveeit Logo

Question

Question: The *x,y* coordinates of the centre of mass of a uniform L-shaped lamina of mass 3 kg is <img src="...

The x,y coordinates of the centre of mass of a uniform L-shaped lamina of mass 3 kg is

A

(56m,56m)\left( \frac{5}{6}m,\frac{5}{6}m \right)

B

(1m, 1m)

C

(65m,65m)\left( \frac{6}{5}m,\frac{6}{5}m \right)

D

(2m, 2m)

Answer

(56m,56m)\left( \frac{5}{6}m,\frac{5}{6}m \right)

Explanation

Solution

Choosing the x and y axes as shown in the figure. The coordinates of the vertices of the L – shaped lamina is as shown in the figure.

Divide the L-shaped lamina into three squares each of side 1m and mass 1 kg (\becausethe lamina is uniform) by symmetry, the centres of mass C1,C2C_{1},C_{2}and C3C_{3}of the squares are their geometric centres and have coordinates C1(12,12),C2(32,12)andC3(12,32)C_{1}\left( \frac{1}{2},\frac{1}{2} \right),C_{2}\left( \frac{3}{2},\frac{1}{2} \right)andC_{3}\left( \frac{1}{2},\frac{3}{2} \right)respectively.

The coordinates of the centre of mass of the L-shaped lamina is

XCM=m1x1+m2x2+m3x3m1+m2+m3X_{CM} = \frac{m_{1}x_{1} + m_{2}x_{2} + m_{3}x_{3}}{m_{1} + m_{2} + m_{3}} =1×12+1×32+1×121+1+1=56 m= \frac { 1 \times \frac { 1 } { 2 } + 1 \times \frac { 3 } { 2 } + 1 \times \frac { 1 } { 2 } } { 1 + 1 + 1 } = \frac { 5 } { 6 } \mathrm {~m} YCM=m1y1+m2y2+m3y3m1+m2+m3=1×12+1×12+1×321+1+1=56mY_{CM} = \frac{m_{1}y_{1} + m_{2}y_{2} + m_{3}y_{3}}{m_{1} + m_{2} + m_{3}} = \frac{1 \times \frac{1}{2} + 1 \times \frac{1}{2} + 1 \times \frac{3}{2}}{1 + 1 + 1} = \frac{5}{6}m