Solveeit Logo

Question

Question: The x- intercept of the tangent at any arbitrary point of the curve \(\dfrac{a}{{{x}^{2}}}+\dfrac{b}...

The x- intercept of the tangent at any arbitrary point of the curve ax2+by2=1\dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1 is proportional to:
A.square of the abscissa of the point of tangency
B.square root of the abscissa of the point of tangency
C.cube of the abscissa of the point of tangency
D.cube root of the abscissa of the point of tangency

Explanation

Solution

xx intercept of line is calculated by substituting y=0y=0 in equation of line ax+by+c=0ax+by+c=0, by differentiating the equation of curve we get the slope of curve at P(r,s)P\left( r,s \right). Put value y=0y=0 in equation of tangent ys=as3br3(xr)y-s=\dfrac{-a{{s}^{3}}}{b{{r}^{3}}}\left( x-r \right) and by using the equation of curve at P(r,s)P\left( r,s \right) obtain the value of xx intercept.

Complete step-by-step answer:
The xx intercept of the tangent at any arbitrary point of curveax2+by2=1\dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1is represented as:

Let the coordinates of the arbitrary point PP can be represented as (r,s)\left( r,s \right)
To find the xx intercept of any line, put the value of yy as zero. The equation for a line is represented as:
ax+by+c=0\Rightarrow ax+by+c=0
Putting the value ofy=0y=0 in the above equation,
ax+b×0+c=0\Rightarrow ax+b\times 0+c=0
ax+c=0 x=ca \begin{aligned} & \Rightarrow ax+c=0 \\\ & \Rightarrow x=\frac{-c}{a} \\\ \end{aligned}
Therefore the value of xx intercept is ca\dfrac{-c}{a}
Calculating the slope of the curve by differentiating the equation for curve,
Equation of curve is
ax2+by2=1....(1)\Rightarrow \dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1....(1)
Differentiating equation with respect to xx (1)
2ax32by3dydx=0\Rightarrow \dfrac{-2a}{{{x}^{3}}}-\dfrac{2b}{{{y}^{3}}}\dfrac{dy}{dx}=0
Separating dydx\dfrac{dy}{dx}term,
2ax3=2by3dydx dydx=ay3bx3 \begin{aligned} & \Rightarrow \dfrac{-2a}{{{x}^{3}}}=\dfrac{2b}{{{y}^{3}}}\dfrac{dy}{dx} \\\ & \Rightarrow \dfrac{dy}{dx}=\dfrac{-a{{y}^{3}}}{b{{x}^{3}}} \\\ \end{aligned}
Putting the values of arbitrary points(r,s)\left( r,s \right)
dydx=as3br3\Rightarrow \dfrac{dy}{dx}=\dfrac{-a{{s}^{3}}}{b{{r}^{3}}}
Equation of tangent at P(r,s)P\left( r,s \right)is:
ys=as3br3(xr).....(2)\Rightarrow y-s=\dfrac{-a{{s}^{3}}}{b{{r}^{3}}}\left( x-r \right).....(2)
Putting the value y=0y=0 in equation (2) to find the xx intercept,
s=as3br3(xr)\Rightarrow -s=\dfrac{-a{{s}^{3}}}{b{{r}^{3}}}\left( x-r \right)
Solving it,
s×br3as3=xr br3as2=xr x=r+br3as2 \begin{aligned} & \Rightarrow -s\times \dfrac{b{{r}^{3}}}{-a{{s}^{3}}}=x-r \\\ & \Rightarrow \dfrac{b{{r}^{3}}}{a{{s}^{2}}}=x-r \\\ & \Rightarrow x=r+\dfrac{b{{r}^{3}}}{a{{s}^{2}}} \\\ \end{aligned}
Taking rr common,
x=r(1+br2as2)\Rightarrow x=r\left( 1+\dfrac{b{{r}^{2}}}{a{{s}^{2}}} \right)
x=r(as2+br2as2)....(3)\Rightarrow x=r\left( \dfrac{a{{s}^{2}}+b{{r}^{2}}}{a{{s}^{2}}} \right)....(3)
From equation of curve ax2+by2=1\dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1,
ax2+by2=1\Rightarrow \dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1
At P(r,s)P\left( r,s \right),
ar2+bs2=1 as2+br2=r2s2.....(4) \begin{aligned} & \Rightarrow \dfrac{a}{{{r}^{2}}}+\dfrac{b}{{{s}^{2}}}=1 \\\ & \Rightarrow a{{s}^{2}}+b{{r}^{2}}={{r}^{2}}{{s}^{2}}.....(4) \\\ \end{aligned}
Substituting equation (4) in (3)
x=r×r2s2as2 x=r3a \begin{aligned} & \Rightarrow x=r\times \dfrac{{{r}^{2}}{{s}^{2}}}{a{{s}^{2}}} \\\ & \Rightarrow x=\dfrac{{{r}^{3}}}{a} \\\ \end{aligned}

Therefore, The xx- intercept of the tangent at any arbitrary point of the curve ax2+by2=1\dfrac{a}{{{x}^{2}}}+\dfrac{b}{{{y}^{2}}}=1 is proportional to (C) cube of the abscissa of the point of tangency.

Note: Differentiate the equation of curve at P(r,s)P\left( r,s \right) with respect to xx. Put the coordinates of arbitrary points other than xx and yy in equations. Take rr common from equation (3).