Solveeit Logo

Question

Question: The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from \[Q\left( {2, - 5}...

The x-coordinate of a point P is twice its y-coordinate. If P is equidistant from Q(2,5)Q\left( {2, - 5} \right) and R(3,6)R\left( { - 3,6} \right), then find the coordinates of P.

Explanation

Solution

Hint: Use the distance formula D=(x2x1)2+(y2y1)2D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}} to compare the distance of P from two points and find the coordinates.

Complete step-by-step answer:

Let the coordinate of point P is (x,y)\left( {x,y} \right).

According to the question, the x-coordinate of P is twice its y-coordinate. Then we have:
x=2y\Rightarrow x = 2y

So, the coordinates of P will be (2y,y)\left( {2y,y} \right).

We know that the distance between two point (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) can be found using distance formula:
D=(x2x1)2+(y2y1)2D = \sqrt {{{\left( {{x_2} - {x_1}} \right)}^2} + {{\left( {{y_2} - {y_1}} \right)}^2}}
Using this, the distance between points P(2y,y)P\left( {2y,y} \right) and point Q(2,5)Q\left( {2, - 5} \right) is:
PQ=(2y2)2+(y+5)2\Rightarrow PQ = \sqrt {{{\left( {2y - 2} \right)}^2} + {{\left( {y + 5} \right)}^2}}
And the distance between points P(2y,y)P\left( {2y,y} \right) and point R(3,6)R\left( { - 3,6} \right) is:
PR=(2y3)2+(y+6)2\Rightarrow PR = \sqrt {{{\left( {2y - 3} \right)}^2} + {{\left( {y + 6} \right)}^2}}

Given in the question, P is equidistant from Q and R. So, we have:
PQ=PR (2y2)2+(y+5)2=(2y3)2+(y+6)2 4y2+48y+y2+25+10y=4y2+912y+y2+36+12y 2y+29=45 2y=16 y=8  \Rightarrow PQ = PR \\\ \Rightarrow \sqrt {{{\left( {2y - 2} \right)}^2} + {{\left( {y + 5} \right)}^2}} = \sqrt {{{\left( {2y - 3} \right)}^2} + {{\left( {y + 6} \right)}^2}} \\\ \Rightarrow 4{y^2} + 4 - 8y + {y^2} + 25 + 10y = 4{y^2} + 9 - 12y + {y^2} + 36 + 12y \\\ \Rightarrow 2y + 29 = 45 \\\ \Rightarrow 2y = 16 \\\ \Rightarrow y = 8 \\\

So, the coordinate of point P is (16,8)\left( {16,8} \right).

Note: In the above question, if in such cases the slope PQ and PR also comes out to be equal then, P, Q and R will lie on the same straight line i.e. they’ll be collinear and P will be the mid-point of Q and R.