Solveeit Logo

Question

Question: The work function of a cathode is estimated using light of wavelength 310±1 nm. The stopping potenti...

The work function of a cathode is estimated using light of wavelength 310±1 nm. The stopping potential is measured to be 500±1mv. hce=1240vnm (known precisely). What is the error e (in %) in work function. Find value of 10e by rounding off to nearest integer.

Answer

4

Explanation

Solution

The energy of the incident photon is given by E=hcλE = \frac{hc}{\lambda}. The work function ϕ\phi and the maximum kinetic energy of the emitted electron KmaxK_{max} are related by Einstein's photoelectric equation: E=ϕ+KmaxE = \phi + K_{max}. The maximum kinetic energy is related to the stopping potential VsV_s by Kmax=eVsK_{max} = eV_s.

Thus, the work function is given by ϕ=EKmax=hcλeVs\phi = E - K_{max} = \frac{hc}{\lambda} - eV_s.

We are given hce=1240\frac{hc}{e} = 1240 V nm. This implies hcλ=1240×eλ\frac{hc}{\lambda} = \frac{1240 \times e}{\lambda}. To express energy in eV, we can write hceλ=1240λ\frac{hc}{e\lambda} = \frac{1240}{\lambda}, where λ\lambda is in nm. This gives the photon energy in eV. The stopping potential VsV_s in Volts gives the maximum kinetic energy in eV directly (Kmax,eV=VsK_{max, eV} = V_s).

Given values: Wavelength λ=310\lambda = 310 nm, with uncertainty Δλ=1\Delta \lambda = 1 nm. Stopping potential Vs=500V_s = 500 mV =0.500= 0.500 V, with uncertainty ΔVs=1\Delta V_s = 1 mV =0.001= 0.001 V.

First, calculate the value of the work function ϕ\phi. Photon energy EeV=1240 eV nm310 nm=4E_{eV} = \frac{1240 \text{ eV nm}}{310 \text{ nm}} = 4 eV. Maximum kinetic energy Kmax,eV=Vs=0.500K_{max, eV} = V_s = 0.500 V =0.5= 0.5 eV. Work function ϕ=EeVKmax,eV=4 eV0.5 eV=3.5\phi = E_{eV} - K_{max, eV} = 4 \text{ eV} - 0.5 \text{ eV} = 3.5 eV.

Next, calculate the error in the work function ϕ\phi. The work function is a function of λ\lambda and VsV_s: ϕ(λ,Vs)=hcλeVs\phi(\lambda, V_s) = \frac{hc}{\lambda} - eV_s. The absolute error in ϕ\phi is given by Δϕ=ϕλΔλ+ϕVsΔVs\Delta \phi = \left|\frac{\partial \phi}{\partial \lambda}\right|\Delta \lambda + \left|\frac{\partial \phi}{\partial V_s}\right|\Delta V_s. ϕλ=hcλ2\frac{\partial \phi}{\partial \lambda} = -\frac{hc}{\lambda^2} ϕVs=e\frac{\partial \phi}{\partial V_s} = -e So, Δϕ=hcλ2Δλ+eΔVs=hcλ2Δλ+eΔVs\Delta \phi = \left|-\frac{hc}{\lambda^2}\right|\Delta \lambda + |-e|\Delta V_s = \frac{hc}{\lambda^2}\Delta \lambda + e\Delta V_s.

To express Δϕ\Delta \phi in eV, we divide by ee: ΔϕeV=Δϕe=hceλ2Δλ+ΔVs\Delta \phi_{eV} = \frac{\Delta \phi}{e} = \frac{hc}{e\lambda^2}\Delta \lambda + \Delta V_s. Using hce=1240\frac{hc}{e} = 1240 V nm: ΔϕeV=1240 V nmλ2 nm2Δλ nm+ΔVs V\Delta \phi_{eV} = \frac{1240 \text{ V nm}}{\lambda^2 \text{ nm}^2}\Delta \lambda \text{ nm} + \Delta V_s \text{ V}. ΔϕeV=1240λ2Δλ+ΔVs\Delta \phi_{eV} = \frac{1240}{\lambda^2}\Delta \lambda + \Delta V_s (in Volts, which is equivalent to eV for energy).

Substitute the values: λ=310\lambda = 310 nm, Δλ=1\Delta \lambda = 1 nm. Vs=0.5V_s = 0.5 V, ΔVs=0.001\Delta V_s = 0.001 V.

ΔϕeV=1240(310)2×1+0.001\Delta \phi_{eV} = \frac{1240}{(310)^2} \times 1 + 0.001 ΔϕeV=124096100+0.001\Delta \phi_{eV} = \frac{1240}{96100} + 0.001 ΔϕeV=1249610+11000\Delta \phi_{eV} = \frac{124}{9610} + \frac{1}{1000} ΔϕeV=124×1000+9610×19610×1000=124000+96109610000=1336109610000=13361961000\Delta \phi_{eV} = \frac{124 \times 1000 + 9610 \times 1}{9610 \times 1000} = \frac{124000 + 9610}{9610000} = \frac{133610}{9610000} = \frac{13361}{961000} eV.

The percentage error in the work function is e=Δϕϕ×100%e = \frac{\Delta \phi}{\phi} \times 100\%. e=13361/961000 eV3.5 eV×100%e = \frac{13361/961000 \text{ eV}}{3.5 \text{ eV}} \times 100\% e=13361961000×13.5×100e = \frac{13361}{961000} \times \frac{1}{3.5} \times 100 e=133619610×13.5e = \frac{13361}{9610} \times \frac{1}{3.5} e=133619610×3.5=1336133635e = \frac{13361}{9610 \times 3.5} = \frac{13361}{33635} e0.39722%e \approx 0.39722\%

We are asked to find the value of 10e10e by rounding off to the nearest integer. 10e10×0.39722=3.972210e \approx 10 \times 0.39722 = 3.9722. Rounding off to the nearest integer, we get 4.

The final answer is 4\boxed{4}.

Explanation of the solution:

  1. Calculate the work function ϕ\phi using the formula ϕ=hcλeVs\phi = \frac{hc}{\lambda} - eV_s and the given values, converting to eV.
  2. Determine the formula for the absolute error in ϕ\phi using error propagation: Δϕ=ϕλΔλ+ϕVsΔVs\Delta \phi = \left|\frac{\partial \phi}{\partial \lambda}\right|\Delta \lambda + \left|\frac{\partial \phi}{\partial V_s}\right|\Delta V_s.
  3. Calculate the partial derivatives and substitute them into the error formula.
  4. Calculate the value of the absolute error Δϕ\Delta \phi in eV using the given uncertainties Δλ\Delta \lambda and ΔVs\Delta V_s.
  5. Calculate the percentage error e=Δϕϕ×100%e = \frac{\Delta \phi}{\phi} \times 100\%.
  6. Calculate 10e10e and round it to the nearest integer.

The final answer is 4\boxed{4}.