Solveeit Logo

Question

Mathematics Question on Geometry

The weight of a solid cone having diameter 14 cm and vertical height 51 cm is _______ if the material of solid cone weighs 10 grams per cubic cm.

A

16.18 kg

B

17.25 kg

C

26.16 kg

D

71.40kg

Answer

26.16 kg

Explanation

Solution

The correct option is (C): 26.16 kg
To find the weight of the solid cone, we can use the formula for the volume of a cone and then multiply it by the density of the material.

Steps to Solve:

1. Formula for the Volume of a Cone:
V=13πr2hV = \frac{1}{3} \pi r^2 h
Where:
rr = radius of the cone
hh = height of the cone

2. Given Values:
- Diameter = 14 cm, so the radius r=142=7r = \frac{14}{2} = 7 cm
- Height h=51h = 51 cm
- Density of the material = 10 grams/cm³

3. Calculating the Volume:
V=13π(72)(51)V = \frac{1}{3} \pi (7^2)(51)
V=13π(49)(51)V = \frac{1}{3} \pi (49)(51)
V=13π(2499)V = \frac{1}{3} \pi (2499)
V13×3.14×2499V \approx \frac{1}{3} \times 3.14 \times 2499
V13×7847.862615.95cm3V \approx \frac{1}{3} \times 7847.86 \approx 2615.95 \, \text{cm}^3

4. Calculating the Weight:
Weight=Volume×Density\text{Weight} = \text{Volume} \times \text{Density}
Weight=2615.95cm3×10grams/cm3\text{Weight} = 2615.95 \, \text{cm}^3 \times 10 \, \text{grams/cm}^3
Weight26159.5grams\text{Weight} \approx 26159.5 \, \text{grams}

5. Converting grams to kilograms:
Weight26159.5100026.16kg\text{Weight} \approx \frac{26159.5}{1000} \approx 26.16 \, \text{kg}

Conclusion:
The weight of the solid cone is approximately 26.16 kg.