Solveeit Logo

Question

Question: The wedge of mass $m$ and inclination $\tan^{-1} 0.75$ with the horizontal is on a smooth horizontal...

The wedge of mass mm and inclination tan10.75\tan^{-1} 0.75 with the horizontal is on a smooth horizontal surface while attached to a long ideal spring of force constant kk. The spring is along a normal to the inclined face of the wedge. When the wedge is given a small displacement, the angular frequency ω\omega of small oscillations satisfies nmω2=knm\omega^2 = k. Find the integer closest to 18n18n.

Answer

50

Explanation

Solution

Explanation:

  1. Let the plane’s inclination be θ\theta where tanθ=0.75\tan\theta=0.75. Then, sinθ=0.6\sin\theta=0.6 and cosθ=0.8\cos\theta=0.8.
  2. The spring is attached along the normal to the plane. Its horizontal projection is the absolute value of the x‐component of the unit normal. The unit normal is n=(sinθ,cosθ)\mathbf{n}=(-\sin\theta,\cos\theta) so its horizontal component is sinθ=sinθ=0.6|-\sin\theta|=\sin\theta=0.6.
  3. For a small horizontal displacement δx\delta x, the compression (or extension) of the spring is δl=δxsinθ\delta l=\delta x\sin\theta. Therefore, the spring force acting horizontally is Fx=kδl(sinθ)=kδxsin2θ.F_x=k\,\delta l\,( \sin\theta)=k\,\delta x\sin^2\theta.
  4. The effective horizontal spring constant is keff=ksin2θk_{\rm eff}=k\sin^2\theta. Thus, the angular frequency of oscillation is ω2=keffm=ksin2θm.\omega^2=\dfrac{k_{\rm eff}}{m}=\dfrac{k\sin^2\theta}{m}.
  5. Given that the oscillation frequency satisfies nmω2=k,nm\,\omega^2=k, substitute ω2\omega^2 to obtain: nm(ksin2θm)=nksin2θ=k.nm\left(\frac{k\sin^2\theta}{m}\right)=n k\sin^2\theta=k.
  6. Cancelling kk leads to: nsin2θ=1n=1sin2θ=10.362.7777.n\sin^2\theta=1\quad\Longrightarrow\quad n=\frac{1}{\sin^2\theta}=\frac{1}{0.36}\approx2.7777.
  7. Thus, 18n18×2.77775018n\approx18\times2.7777\approx50.

Answer: 50