Solveeit Logo

Question

Question: The wavelength of the \({{{K}}_{{\alpha }}}\)line for an element of atomic number \(57\)is\({{\lambd...

The wavelength of the Kα{{{K}}_{{\alpha }}}line for an element of atomic number 5757isλ{{\lambda }}. What is the wavelength of Kα{{{K}}_{{\alpha }}} line for the element of atomic number2929?
A. λ\lambda
B. 2λ2\lambda
C. 4λ4\lambda
D. λ4\dfrac{{{\lambda }}}{{{4}}}

Explanation

Solution

The relation between wavelength of an element and the atomic number of an element is given by the formula, 1λα(z1)2\dfrac{{{1}}}{{{\lambda }}}{{ \alpha (z - 1}}{{{)}}^{{2}}}. This formula can also be written as λ2λ1=(z11)2(z22)2\dfrac{{{{{\lambda }}_{{2}}}}}{{{{{\lambda }}_{{1}}}}}{{ = }}\dfrac{{{{{{(}}{{{z}}_{{1}}}{{ - 1)}}}^{{2}}}}}{{{{{{(}}{{{z}}_{{2}}}{{ - 2)}}}^{{2}}}}}. Then substitute the given values of atomic number and wavelength in the formula. Now, simply it by doing further calculations and then the required relation can be obtained.

Complete step by step answer:
The atomic number or proton number (represented by Z) of a chemical element is the number of protons present in the nucleus of every atom of that particular element. The atomic number uniquely identifies a chemical element. It is identical (similar) to the charge number of the nucleus.

Given: Atomic number of an element, z1=57{{{z}}_1}{{ = 57}}
Wavelength of Kα{{{K}}_{{\alpha }}}line of an element is λ{{\lambda }}
To find: Value of wavelength Kα{{{K}}_{{\alpha }}}line for element having atomic number, z2=29{{{z}}_{{2}}}{{ = 29}}

Let the wavelength of an element having atomic number 2929 be λ{{\lambda '}}.
The relationship between wavelength and atomic number for Kα{{{K}}_{{\alpha }}}line is given by
1λα(z1)2  orλλ=(z11)2(z21)2  \dfrac{{{1}}}{{{\lambda }}}{{ \alpha (z - 1}}{{{)}}^{{2}}} \\\ \text{ or} \dfrac{{{{\lambda '}}}}{{{\lambda }}}{{ = }}\dfrac{{{{{{(}}{{{z}}_{{1}}}{{ - 1)}}}^{{2}}}}}{{{{{{(}}{{{z}}_{{2}}}{{ - 1)}}}^{{2}}}}} \\\

On substituting the values in above formula, we get
λλ=(571)2(291)2=41\dfrac{\lambda '}{\lambda}=\dfrac{(57-1)^2}{(29-1)^2}=\dfrac{4}{1}
λ=4λ{\lambda '}=4\lambda

Thus, the wavelength of Kα{{{K}}_{{\alpha }}} line for the element having atomic number 2929 is four times that of the wavelength of an element having atomic number 5757is4λ{{4\lambda }}.

Hence, the correct answer is option (C).

Additional information:

Note: The wavelength of Kα{{{K}}_{{\alpha }}} line is related to atomic number Z{{Z}} by Moseley's Formula 1λ=R(Z1)2(1n121n22)\dfrac{{{1}}}{{{\lambda }}}{{ = R(Z - 1}}{{{)}}^{{2}}}\left( {\dfrac{{{1}}}{{{{{n}}_{{1}}}^{{2}}}}{{ - }}\dfrac{{{1}}}{{{{{n}}_{{2}}}^{{2}}}}} \right)
The elements having high atomic number (for example molybdenum) give high energy rays (with short wavelengths).
K-alpha emission lines are in actuality the result when an electron transitions to the innermost "K" shell (having principal quantum number 1) from a 2p orbital of the second or "L" shell (having principal quantum number 2). The K-alpha1 emission (represented by kα1{{{k}}_{{{{\alpha }}_{{1}}}}}) is higher in energy and therefore has a lower wavelength than the K-alpha2 emission (represented by kα2{{{k}}_{{{{\alpha }}_2}}}).