Solveeit Logo

Question

Physics Question on Atomic Spectra

The wavelength of the first spectral line in the Balmer series of hydrogen atom is 6561A˚6561\, \mathring{A}. The wavelength of the second spectral line in the Balmer series of singly ionized helium atom is

A

1215A˚1215\mathring{A}

B

16405A˚16405\mathring{A}

C

2430A˚2430\mathring{A}

D

4687A˚4687\mathring{A}

Answer

1215A˚1215\mathring{A}

Explanation

Solution

For hydrogen or hydrogen type atoms
1λ=RZ2(1nf21ni2)\frac{1}{\lambda}=RZ^2\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)
In the transition from ninfn_i\rightarrow n_f
λ?1Z2(1nf21ni2)\therefore\lambda?\frac{1}{Z^2\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)}
λ2λ1=Z12(1nf21ni2)1Z22(1nf21ni2)2,\therefore\frac{\lambda_2}{\lambda_1}=\frac{Z^2_1\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)_1}{Z^2_2\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)_2},
λ1=λ1Z12(1nf21ni2)1Z22(1nf21ni2)2,{\lambda_1}=\frac{\lambda_1Z^2_1\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)_1}{Z^2_2\bigg(\frac{1}{n^2_f}-\frac{1}{n^2_i}\bigg)_2},
Substituting the values, we have
=(6561A˚)(1)2(122132)(22)(122142)=1215A˚=\frac{(6561\mathring{A})(1)^2\bigg(\frac{1}{2^2}-\frac{1}{3^2}\bigg)}{(2^2)\bigg(\frac{1}{2^2}-\frac{1}{4^2}\bigg)}=1215\mathring{A}
\therefore Correct option is (a).