Solveeit Logo

Question

Question: The wavelength of first line of Balmer series is 6563 Å. The wavelength of first line of Lyman serie...

The wavelength of first line of Balmer series is 6563 Å. The wavelength of first line of Lyman series will be–

A

1215.4 Å

B

2500 Å

C

7500 Å

D

600 Å

Answer

1215.4 Å

Explanation

Solution

1λ=R(1n121n22)\frac{1}{\lambda} = R\left( \frac{1}{n_{1}^{2}}–\frac{1}{n_{2}^{2}} \right)

1λ1=R[122132]\frac{1}{\lambda_{1}} = R\left\lbrack \frac{1}{2_{}^{2}}–\frac{1}{3_{}^{2}} \right\rbrack

= R(1419)R\left( \frac{1}{4}–\frac{1}{9} \right)= 5R36\frac{5R}{36}

1λ2=R[1114]\frac{1}{\lambda_{2}} = R\left\lbrack \frac{1}{1}–\frac{1}{4} \right\rbrack

= R(34)R\left( \frac{3}{4} \right)= 34\frac{3}{4}R

\ λ2λ1=5/363/4\frac{\lambda_{2}}{\lambda_{1}} = \frac{5/36}{3/4} = 536\frac{5}{36}× 43\frac{4}{3} = 527\frac{5}{27}

l2 = 527λ1\frac{5}{27}\lambda_{1}

l2 = 527×6563A˚\frac{5}{27} \times 6563Å= 1215.4Å