Solveeit Logo

Question

Question: The wavelength of an electron of kinetic energy 4.50 × 10-29 J is...... × 10-5 m. (Nearest integer)...

The wavelength of an electron of kinetic energy 4.50 × 10-29 J is...... × 10-5 m. (Nearest integer)

Answer

7

Explanation

Solution

The de Broglie wavelength (λ\lambda) of a particle is given by the formula λ=hp\lambda = \frac{h}{p}, where hh is Planck's constant and pp is the momentum of the particle. Momentum can be related to kinetic energy (KE) using the formula p=2mKEp = \sqrt{2mKE}, where mm is the mass of the particle. Substituting this into the de Broglie equation gives: λ=h2mKE\lambda = \frac{h}{\sqrt{2mKE}} Given values are: Planck's constant, h=6.6×1034h = 6.6 \times 10^{-34} J s Mass of electron, m=9×1031m = 9 \times 10^{-31} kg Kinetic energy, KE=4.50×1029KE = 4.50 \times 10^{-29} J

Substitute these values into the formula: λ=6.6×1034 J s2×(9×1031 kg)×(4.50×1029 J)\lambda = \frac{6.6 \times 10^{-34} \text{ J s}}{\sqrt{2 \times (9 \times 10^{-31} \text{ kg}) \times (4.50 \times 10^{-29} \text{ J})}} First, calculate the term inside the square root: 2mKE=2×9×1031×4.50×1029=81×1060 kg2m2/s22mKE = 2 \times 9 \times 10^{-31} \times 4.50 \times 10^{-29} = 81 \times 10^{-60} \text{ kg}^2\text{m}^2/\text{s}^2 Now, take the square root: 2mKE=81×1060=9×1030 kg m/s\sqrt{2mKE} = \sqrt{81 \times 10^{-60}} = 9 \times 10^{-30} \text{ kg m/s} Now, calculate the wavelength: λ=6.6×1034 J s9×1030 kg m/s=6.69×1034(30) m\lambda = \frac{6.6 \times 10^{-34} \text{ J s}}{9 \times 10^{-30} \text{ kg m/s}} = \frac{6.6}{9} \times 10^{-34 - (-30)} \text{ m} λ=6.69×104 m\lambda = \frac{6.6}{9} \times 10^{-4} \text{ m} Calculating the fraction: 6.690.7333...\frac{6.6}{9} \approx 0.7333... So, the wavelength is: λ0.7333...×104 m\lambda \approx 0.7333... \times 10^{-4} \text{ m} The question asks for the answer in the format ...... × 10-5 m. Convert the wavelength to this format: λ0.7333...×104 m=7.333...×105 m\lambda \approx 0.7333... \times 10^{-4} \text{ m} = 7.333... \times 10^{-5} \text{ m} The question requires the nearest integer value for the blank space. The value is 7.333...7.333.... The nearest integer to 7.333...7.333... is 77.