Solveeit Logo

Question

Question: The wavelength of a \[1\,{\text{keV}}\] photon is \[1.24 \times {10^{ - 9}}\,{\text{m}}\]. What is t...

The wavelength of a 1keV1\,{\text{keV}} photon is 1.24×109m1.24 \times {10^{ - 9}}\,{\text{m}}. What is the frequency of 1MeV1\,{\text{MeV}} photon?
A. 1.24×1015Hz1.24 \times {10^{15}}\,{\text{Hz}}
B. 2.4×1020Hz2.4 \times {10^{20}}\,{\text{Hz}}
C. 1.24×1018Hz1.24 \times {10^{18}}\,{\text{Hz}}
D. 2.4×1023Hz2.4 \times {10^{23}}\,{\text{Hz}}

Explanation

Solution

Use the formula for the energy of a photon in terms of the wavelength of the photon and the energy of a photon in terms of frequency of the photon. Convert the units of energies of the photon in the same unit. Substitute all the values in the two energy formulae and determine the required frequency.

Formulae used:
The energy EE of a photon is given by
E=hcλ\Rightarrow E = \dfrac{{hc}}{\lambda } …… (1)
Here, hh is the Planck’s constant, cc is the speed of light and λ\lambda is the wavelength of the photon.
The energy EE of a photon is given by
E=hγ\Rightarrow E = h\gamma …… (2)
Here, hh is the Planck’s constant and γ\gamma is the frequency of the photon.

Complete step by step solution:
We have given that the wavelength of the photon with energy 1keV1\,{\text{keV}} is 1.24×109m1.24 \times {10^{ - 9}}\,{\text{m}}.
E1=1keV\Rightarrow{E_1} = 1\,{\text{keV}}
λ=1.24×109m\Rightarrow\lambda = 1.24 \times {10^{ - 9}}\,{\text{m}}
Convert the unit of energy E1{E_1} from keV to eV.
E1=(1keV)(1031k)\Rightarrow{E_1} = \left( {1\,{\text{keV}}} \right)\left( {\dfrac{{{{10}^3}}}{{1\,{\text{k}}}}} \right)
E1=1×103eV\Rightarrow {E_1} = 1 \times {10^3}\,{\text{eV}}
Hence, the energy E1{E_1} of the photon is 1×103eV1 \times {10^3}\,{\text{eV}}.
Rewrite equation (1) for the energy E1{E_1} of the photon.
E1=hcλ\Rightarrow{E_1} = \dfrac{{hc}}{\lambda }
Substitute 1×103eV1 \times {10^3}\,{\text{eV}} for E1{E_1} and 1.24×109m1.24 \times {10^{ - 9}}\,{\text{m}} for λ\lambda in the above equation.
1×103eV=hc1.24×109m1 \times {10^3}\,{\text{eV}} = \dfrac{{hc}}{{1.24 \times {{10}^{ - 9}}\,{\text{m}}}} …… (3)
We need to determine the frequency of the photon with energy 1MeV1\,{\text{MeV}}.
E2=1MeV\Rightarrow{E_2} = 1\,{\text{MeV}}
Convert the unit of energy E2{E_2} from MeV to eV.
\Rightarrow{E_2} = \left( {1\,{\text{MeV}}} \right)\left( {\dfrac{{{{10}^6}}}{{1\,{\text{M}}}}} \right)$$$$1 \times {10^6}\,{\text{eV}}
E2=1×106eV\Rightarrow {E_2} = 1 \times {10^6}\,{\text{eV}}
Hence, the energy E2{E_2} of the photon is 1×106eV1 \times {10^6}\,{\text{eV}}.
Rewrite equation (2) for the energy E2{E_2} of the photon.
E2=hγ\Rightarrow{E_2} = h\gamma
Substitute 1×106eV1 \times {10^6}\,{\text{eV}} for E2{E_2} in the above equation.
1×106eV=hγ\Rightarrow 1 \times {10^6}\,{\text{eV}} = h\gamma …… (4)
Divide equation (4) by equation (3).
1×106eV1×103eV=hγhc1.24×109m\Rightarrow\dfrac{{1 \times {{10}^6}\,{\text{eV}}}}{{1 \times {{10}^3}\,{\text{eV}}}} = \dfrac{{h\gamma }}{{\dfrac{{hc}}{{1.24 \times {{10}^{ - 9}}\,{\text{m}}}}}}
103=(1.24×109m)γc\Rightarrow {10^3} = \dfrac{{\left( {1.24 \times {{10}^{ - 9}}\,{\text{m}}} \right)\gamma }}{c}
Rearrange the above equation for γ\gamma .
γ=c1031.24×109m\Rightarrow \gamma = \dfrac{{c{{10}^3}}}{{1.24 \times {{10}^{ - 9}}\,{\text{m}}}}
Substitute 3×108m/s3 \times {10^8}\,{\text{m/s}} for cc in the above equation.
γ=(3×108m/s)1031.24×109m\Rightarrow \gamma = \dfrac{{\left( {3 \times {{10}^8}\,{\text{m/s}}} \right){{10}^3}}}{{1.24 \times {{10}^{ - 9}}\,{\text{m}}}}
γ=2.4×1020Hz\therefore \gamma = 2.4 \times {10^{20}}\,{\text{Hz}}
Therefore, the frequency of the photon is 2.4×1020Hz2.4 \times {10^{20}}\,{\text{Hz}}.

Hence, the correct option is B.

Note: There is no need to convert the units of energy in the SI system of units as after taking division of the two energy equations, the units of energy term gets cancelled. But the students should not forget to convert the units of both the energies in the same unit like electronvolt for getting the correct answer.