Solveeit Logo

Question

Question: The wavelength limit present in the Pfund series is \[(R = 1.097 \times 10^{7}\text{m }\text{s}^{- ...

The wavelength limit present in the Pfund series is

(R=1.097×107s1)(R = 1.097 \times 10^{7}\text{m }\text{s}^{- 1})

A

1572 nm

B

1898 nm

C

2278 nm

D

2535 nm

Answer

2278 nm

Explanation

Solution

The wavelength for Pfund series is given by

1λ=R[1521n2]\frac{1}{\lambda} = R\left\lbrack \frac{1}{5^{2}} - \frac{1}{n^{2}} \right\rbrack

For series limit n=n = \infty

1λ=R[12512]=R25\therefore\frac{1}{\lambda} = R\left\lbrack \frac{1}{25} - \frac{1}{\infty^{2}} \right\rbrack = \frac{R}{25}

λ=25R=251.097×107=2278nm.\therefore\lambda = \frac{25}{R} = \frac{25}{1.097 \times 10^{7}} = 2278nm.