Solveeit Logo

Question

Chemistry Question on Structure of atom

The wave number of the spectral line in the emission spectrum of hydrogen will be equal to 89\frac {8}{9} times the Rydberg's constant if the electron jumps from _______

A

n=10ton=1n \,= \,10 \,to\, n \,=\, 1

B

n=3ton=1n\, = \,3 \,to\, n \,= \,1

C

n=2ton=1n \,= \,2 \,to\, n\, =\, 1

D

n=9ton=1n \,= \,9 \,to\, n\, =\, 1

Answer

n=3ton=1n\, = \,3 \,to\, n \,= \,1

Explanation

Solution

Wave number of spectral line in emission spectrum of hydrogen,

vˉ=RH(1n121n22)\bar{v}=R_{H}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)...(i)

Given, vˉ=89RH\bar{v}=\frac{8}{9} R_{H}

On putting the value of vˉ\bar{v} in E (i), we get

89RH=RH(1n121n22)\frac{8}{9} R_{ H } =R_{ H }\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)
89=1(1)21n22\frac{8}{9} =\frac{1}{(1)^{2}}-\frac{1}{n_{2}^{2}}
891=1n22\frac{8}{9}-1 =-\frac{1}{n_{2}^{2}}
13=1n2\frac{1}{3} =\frac{1}{n_{2}}
n2=3\therefore n_{2}=3

Hence, electron jumps from n2=3n_{2}=3 to n1=1n_{1}=1