Solveeit Logo

Question

Chemistry Question on Conductance

The walls of a closed cubical box of edge 60cm60\, cm are made of material of thickness 1mm1\, mm and thermal conductivity 4×104  cal  s1  cm1C14 \times 10^{-4} \; cal \; s^{-1} \; cm^{-1} {^{\circ}C^{-1}}. The interior of the box is maintained 1000  C1000 \; {^{\circ}C} above the outside temperature by a heater placed inside the box and connected across 400VDC400\, V\, DC supply. The resistance of the heater is

A

4.41 Ω\Omega

B

44.1 Ω\Omega

C

0.441 Ω\Omega

D

441 Ω\Omega

Answer

0.441 Ω\Omega

Explanation

Solution

Heat transfer through conduction wall is given by mathematical expression, dQdt=kA(T1T0)x\frac{d Q}{d t}=k A \frac{\left(T_{1}-T_{0}\right)}{x} where, dQdt=\frac{d Q}{d t}= power transferred through the wall and x=x= thickness of the wall Here, side of cube, a=60cma=60 \,cm. Hence, area A=6aA=6 a_{\text {, }} \because Total area =6=6 (area of one side of the cube) thickness x=0.1cmx=0.1 \,cm, thermal conductivity, k=4×104cals1cm1C1k=4 \times 10^{-4} cal s ^{-1} cm ^{-1}{ }^{\circ} C ^{-1}, temperature difference, (T1T0)=1000C\left(T_{1}-T_{0}\right)=1000^{\circ} C and potential of DC source V=400VV=400 \,V Hence, the power P=kA×4.184×(T1T0)xP =\frac{k A \times 4.184 \times\left(T_{1}-T_{0}\right)}{x} P=k6a2×4.184×103xP =\frac{k 6 a^{2} \times 4.184 \times 10^{3}}{x} P=4×104×6×(60)2×103×4.1840.1JP =\frac{4 \times 10^{-4} \times 6 \times(60)^{2} \times 10^{3} \times 4.184}{0.1} J P=361.49WP =361.49 \,W Given, voltage supply of DC=400VDC =400 \,V Hence, power generated in a resistance, P=V2R=361.49P=\frac{V^{2}}{R}=361.49 R=V2P\Rightarrow R=\frac{V^{2}}{P} R=400×400361.49×103=0.4426ΩR=\frac{400 \times 400}{361.49 \times 10^{3}}=0.4426\, \Omega