Solveeit Logo

Question

Question: The volume of water added to \( 500{\text{ mL}} \) , \( {\text{0}}{\text{.5 M NaOH}} \) solution so ...

The volume of water added to 500 mL500{\text{ mL}} , 0.5 M NaOH{\text{0}}{\text{.5 M NaOH}} solution so that its strength becomes 10 mg NaOH{\text{10 mg NaOH}} per mL{\text{mL}} :

Explanation

Solution

The strength of solution is the ratio of mass of solute and volume of solution. We will find the moles of NaOH{\text{NaOH}} present in the solution. Then we can find the mass of NaOH{\text{NaOH}} with the help of moles and molecular mass of NaOH{\text{NaOH}} . Thus after addition of water we can find its strength by using the above relation.
(i) number of moles = molarity × volume of solution(i){\text{ number of moles = molarity }} \times {\text{ volume of solution}}
(ii) Strength = mass of solutevolume of solution(ii){\text{ Strength = }}\dfrac{{mass{\text{ }}of{\text{ }}solute}}{{volume{\text{ }}of{\text{ }}solution}} .

Complete Step By Step Answer:
Since the volume of NaOH{\text{NaOH}} solution is 500 mL500{\text{ mL}} and its molarity is given as 0.5 M0.5{\text{ M}} . Therefore the number of moles can be find using relation as:
 number of moles = molarity × volume of solution\Rightarrow {\text{ number of moles = molarity }} \times {\text{ volume of solution}}
 number of moles = 0.5 × 500 mL\Rightarrow {\text{ number of moles = 0}}{\text{.5 }} \times {\text{ 500 mL}}
 number of moles = 0.5 × 500 × 103\Rightarrow {\text{ number of moles = 0}}{\text{.5 }} \times {\text{ 500 }} \times {\text{ 1}}{{\text{0}}^{ - 3}}
 number of moles = 0.25 mole\Rightarrow {\text{ number of moles = 0}}{\text{.25 mole}}
Now we will find the mass of 0.25 mole NaOH{\text{0}}{\text{.25 mole NaOH}} as:
mass = moles × molecular mass\Rightarrow {\text{mass = moles }} \times {\text{ molecular mass}}
The molecular mass of NaOH{\text{NaOH}} is: 23+16+1=4023 + 16 + 1 = 40
Therefore the mass of NaOH{\text{NaOH}} will be:
mass = 0.25 × 40\Rightarrow {\text{mass = 0}}{\text{.25 }} \times {\text{ 40}}
mass = 10 g\Rightarrow {\text{mass = 10 g}}
We know that strength of solution can be find as:
Strength = mass of solutevolume of solution{\text{Strength = }}\dfrac{{mass{\text{ }}of{\text{ }}solute}}{{volume{\text{ }}of{\text{ }}solution}}
Now let xx be volume of water is added to 500 mL500{\text{ mL}} of NaOH{\text{NaOH}} , then its total volume will be (x+500) mL\left( {x + 500} \right){\text{ mL}} . Then its strength will be:
Strength = mass of solutevolume of solution\Rightarrow {\text{Strength = }}\dfrac{{mass{\text{ }}of{\text{ }}solute}}{{volume{\text{ }}of{\text{ }}solution}}
Strength = 10(x+500)\Rightarrow {\text{Strength = }}\dfrac{{10}}{{\left( {x + 500} \right)}}
It is given that strength of solution will be 10 mg NaOH{\text{10 mg NaOH}} per mL{\text{mL}} , therefore:
10 mg = 10(x+500)\Rightarrow 10{\text{ mg = }}\dfrac{{10}}{{\left( {x + 500} \right)}}
10 × 103 g = 10(x+500)\Rightarrow 10{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 3}}{\text{ g = }}\dfrac{{10}}{{\left( {x + 500} \right)}} (Milligram is being converted into gram)
(x+500) = 1010 × 103\Rightarrow \left( {x + 500} \right){\text{ = }}\dfrac{{10}}{{10{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 3}}}}
(x+500) = 103\Rightarrow \left( {x + 500} \right){\text{ = 1}}{{\text{0}}^3}
x+500 = 1000\Rightarrow x + 500{\text{ = 1000}}
x = 500\Rightarrow x{\text{ = 500}}
Therefore the volume of water will be 500 mL500{\text{ mL}} . Hence we can say that the volume of water added must be 500 mL500{\text{ mL}} .

Note:
We should convert milligram into gram and milliliter to litre while finding the number of moles of NaOH{\text{NaOH}} in the solution otherwise the number of moles will be in millimoles. For all these conversions we have divided them by a factor of 10001000 . The volume of water can be found in litres by dividing it by a factor of 10001000 . The molecular mass of NaOH{\text{NaOH}} can be found by algebraic sum of mass of each atom present in NaOH{\text{NaOH}} .