Solveeit Logo

Question

Mathematics Question on Vector Algebra

The volume of the tetrahedron whose coterminous edges are j^+k^ \hat{j}+\hat{k}, i^+k^ \hat{i}+\hat{k}, i^+j^\hat{i}+\hat{j} is

A

16\frac{1}{6} cu. unit

B

13\frac{1}{3} cu. unit

C

12\frac{1}{2} cu. unit

D

23\frac{2}{3} cu. unit

Answer

13\frac{1}{3} cu. unit

Explanation

Solution

Here a=j^+k^\vec{a} = \hat{j}+\hat{k}, b=i^+k^\vec{b} = \hat{i}+\hat{k}, c=i^+j^\vec{c} = \hat{i}+\hat{j} \therefore Volume =16[abc]=16011 101 110= \frac{1}{6} \left[\vec{a}\, \vec{b}\, \vec{c} \right] = \frac{1}{6}\begin{vmatrix}0&1&1\\\ 1&0&1\\\ 1&1&0\end{vmatrix} =16[(01)+(10)]= \frac{1}{6} \left[ -\left(0 -1\right)+ \left(1-0 \right) \right] =16(1+1)=13= \frac{1}{6}\left(1+1\right) = \frac{1}{3} cu. units