Solveeit Logo

Question

Physics Question on Surface tension

The volume of mercury in the bulb of a thermometer is 106m3{{10}^{-6}}{{m}^{3}} . The area of cross- section of the capillary tube is 2×107m2.2\times {{10}^{-7}}{{m}^{2}}. If the temperature is raised by 100C100{}^\circ C , the increase in the length of the mercury column is (γHg=18×105/0C)\left( {{\gamma }_{Hg}}=18\,\times \,{{10}^{-5}}{{/}^{0}}C \right)

A

18 cm

B

0.9 cm

C

9 cm

D

1.8 cm

Answer

9 cm

Explanation

Solution

By cubical expansion relation. ΔV=V×γ×ΔT\Delta V=V\times \gamma \times \Delta T where γ\gamma is coefficient of cubical expansion and V=106m3=V={{10}^{-6}}{{m}^{3}}= initial volume γ=18×105/oC\gamma =18\times {{10}^{-5}}/{{\,}^{o}}C ΔT=100oC\Delta T=100{{\,}^{o}}C \therefore ΔV=106×18×105×102\Delta V={{10}^{-6}}\times 18\times {{10}^{-5}}\times {{10}^{2}} =18×109=18\times {{10}^{-9}} Since, ΔV=A×Δl\Delta V=A\times \Delta l \therefore 18×109=2×107×Δl18\times {{10}^{-9}}=2\times {{10}^{-7}}\times \Delta l or 9×102=Δl9\times {{10}^{-2}}=\Delta l or Δl=9cm\Delta l=9\,cm