Solveeit Logo

Question

Physics Question on Pressure

The volume of an air bubble increases by x% as it rises from the bottom of a lake to its surface. If the height of the water barometer is H, the depth of the lake is

A

Hx(100x)\frac{Hx}{(100-x)}

B

Hx(100+x)\frac{Hx}{(100+x)}

C

Hx100\frac{Hx}{100}

D

100H/x

Answer

Hx100\frac{Hx}{100}

Explanation

Solution

We have, P1V1=P2V2P _{1} V _{1}= P _{2} V _{2} V2=V1+x100V1V _{2}= V _{1}+\frac{ x }{100} V _{1} P1V1=P2(V2+x100V1)P _{1} V _{1}= P _{2}\left( V _{2}+\frac{ x }{100} V _{1}\right) P1=P2(1+x100)P _{1}= P _{2}\left(1+\frac{ x }{100}\right) But, P2=1atmP _{2}=1 atm Then, P1=P2+hHP _{1}= P _{2}+\frac{ h }{ H } 1+hH=1+x1001+\frac{ h }{ H }=1+\frac{ x }{100} h=xH100h =\frac{ xH }{100}