Solveeit Logo

Question

Mathematics Question on Volume of a Right Circular Cone

The volume of a right circular cone is 9856 cm³. If the diameter of the base is 28 cm, find.
(i) height of the cone
(ii) slant height of the cone
(iii) curved surface area of the cone

Answer

(i) Radius of cone =282\frac{28}{2} cm = 14 cm
Let the height of the cone be h.
Volume of cone = 9856 cm3

13π⇒\frac{1}{3}\pir²h = 9856 cm3

h =9856 cm3×3πr2= \frac{9856\ cm^3 × 3}{\pi r²}

=9856 cm3×3(14 cm×14 cm)×722= \frac{9856\ cm^3 × 3}{(14\ cm × 14\ cm) }× \frac{7}{22}
= 48 cm
So, the height of the cone is 48 cm.


(ii) Slant height of the cone, l=r2+h2l = \sqrt{r² + h²}
=(14)2+(48)2= \sqrt{(14)² + (48)²}

=196\+2304= \sqrt{196 \+ 2304}

=2500= \sqrt{2500}
= 50 cm
So, the slant height of the cone is 50 cm.


(iii) Curved surface area of the cone= π\pirl
=227= \frac{22}{7}× 14 cm × 50 cm
= 2200 cm²
Therefore, the curved surface area of the cone is 2200 cm2 .