Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

The volume of a cube is increasing at the rate of 8cm3/s8 cm^3 /s. How fast is the surface area increasing when the length of an edge is 12cm12 cm?

Answer

The correct answer is 83cm2/s.\frac{8}{3} cm^2 /s.
Let xx be the length of a side, VV be the volume, and ss be the surface area of the cube. Then, V=x3V = x^3 and S=6x2S = 6x^2 where xx is a function of time tt.
It is given that dvdt=8cm3/s\frac{dv}{dt}=8cm^3/s
Then, by using the chain rule, we have:
8=dvdt=ddt(x3)=dxdt(x3).dxdt=3x2.dxdt∴ 8=\frac{dv}{dt}=\frac{d}{dt}(x^3)=\frac{dx}{dt}(x^3).\frac{dx}{dt}=3x^2.\frac{dx}{dt}
dxdt=83x2....(1)\frac{dx}{dt}=\frac{8}{3x^2}....(1)
Now, dsdt=ddt(6x2)=ddt(6x2).dxdt\frac{ds}{dt}=\frac{d}{dt}(6x^2)=\frac{d}{dt}(6x^2).\frac{dx}{dt} ...[By chain rule]
=12x.dxdt=12x.dxdt=12x.(83x2)=32x=12x.\frac{dx}{dt}=12x.\frac{dx}{dt}=12x.(\frac{8}{3x^2})=\frac{32}{x}
dsdt=3212cm2/s=83cm2/s.\frac{ds}{dt}=\frac{32}{12}cm^2/s=\frac{8}{3}cm^2/s.
Thus, when x=12cm,x = 12 cm, Hence, if the length of the edge of the cube is 12cm12 cm, then the surface area is increasing at the rate of 83cm2/s.\frac{8}{3} cm^2 /s.