Solveeit Logo

Question

Question: The voltage $V(t)$ across a capacitor of capacitance $C$ discharging through a resistance $R$ is giv...

The voltage V(t)V(t) across a capacitor of capacitance CC discharging through a resistance RR is given by V(t)=V0et/RCV(t) = V_0e^{-t/RC}. The initial voltage V0V_0 is 10.00 ±\pm 0.02 V, R=100.0±0.1 MΩR = 100.0 \pm 0.1 \ M\Omega and C=1.00 μFC = 1.00 \ \mu F. The circuit is closed and subsequently disconnected after 100 ±\pm 1 seconds. The final voltage is best represented as

A

2.71 ±\pm 0.01 V

B

3.67 ±\pm 0.003 V

C

3.67 ±\pm 0.05 V

D

3.67 ±\pm 0.37 V

Answer

3.67 ±\pm 0.05 V

Explanation

Solution

The voltage across a discharging capacitor is given by V(t)=V0et/RCV(t) = V_0e^{-t/RC}.

Given values: Initial voltage V0=10.00±0.02V_0 = 10.00 \pm 0.02 V Resistance R=100.0±0.1 MΩ=(100.0±0.1)×106 ΩR = 100.0 \pm 0.1 \ M\Omega = (100.0 \pm 0.1) \times 10^6 \ \Omega Capacitance C=1.00 μF=1.00×106 FC = 1.00 \ \mu F = 1.00 \times 10^{-6} \ F (Uncertainty in C is not given, so assume it's negligible) Time t=100±1t = 100 \pm 1 s

1. Calculate the nominal value of the final voltage V(t)V(t):

First, calculate the time constant τ=RC\tau = RC. τ=(100.0×106 Ω)×(1.00×106 F)=100.0 s\tau = (100.0 \times 10^6 \ \Omega) \times (1.00 \times 10^{-6} \ F) = 100.0 \ s

Now, substitute the values into the voltage equation: V(t)=V0et/RC=10.00×e100/100.0=10.00×e1V(t) = V_0e^{-t/RC} = 10.00 \times e^{-100/100.0} = 10.00 \times e^{-1} V(t)=10.00×0.36787944...3.67879 VV(t) = 10.00 \times 0.36787944... \approx 3.67879 \ V Rounding to two decimal places, V(t)3.68 VV(t) \approx 3.68 \ V. Looking at the options, 3.67 V3.67 \ V is preferred.

2. Calculate the uncertainty in the final voltage ΔV\Delta V:

The formula for error propagation for a function Y=f(X1,X2,,Xn)Y = f(X_1, X_2, \dots, X_n) is given by: (ΔY)2=(YX1ΔX1)2+(YX2ΔX2)2++(YXnΔXn)2(\Delta Y)^2 = \left(\frac{\partial Y}{\partial X_1} \Delta X_1\right)^2 + \left(\frac{\partial Y}{\partial X_2} \Delta X_2\right)^2 + \dots + \left(\frac{\partial Y}{\partial X_n} \Delta X_n\right)^2

In our case, V=V0et/RCV = V_0e^{-t/RC}. We need to find ΔV\Delta V considering uncertainties in V0V_0, tt, and RR. We assume ΔC=0\Delta C = 0.

The partial derivatives are: VV0=et/RC\frac{\partial V}{\partial V_0} = e^{-t/RC} Vt=V0et/RC(1RC)=VRC\frac{\partial V}{\partial t} = V_0 e^{-t/RC} \left(-\frac{1}{RC}\right) = -\frac{V}{RC} VR=V0et/RC(tC)(R2)=VtCR2\frac{\partial V}{\partial R} = V_0 e^{-t/RC} \left(-\frac{t}{C}\right) (-R^{-2}) = V \frac{t}{CR^2}

Now, substitute these into the error propagation formula: (ΔV)2=(VV0ΔV0)2+(VtΔt)2+(VRΔR)2(\Delta V)^2 = \left(\frac{\partial V}{\partial V_0} \Delta V_0\right)^2 + \left(\frac{\partial V}{\partial t} \Delta t\right)^2 + \left(\frac{\partial V}{\partial R} \Delta R\right)^2 (ΔV)2=(et/RCΔV0)2+(VRCΔt)2+(VtCR2ΔR)2(\Delta V)^2 = \left(e^{-t/RC} \Delta V_0\right)^2 + \left(-\frac{V}{RC} \Delta t\right)^2 + \left(V \frac{t}{CR^2} \Delta R\right)^2

Divide by V2V^2 to get the relative uncertainty squared: (ΔVV)2=(et/RCΔV0V)2+(VRCΔtV)2+(VtCR2ΔRV)2\left(\frac{\Delta V}{V}\right)^2 = \left(\frac{e^{-t/RC} \Delta V_0}{V}\right)^2 + \left(\frac{-\frac{V}{RC} \Delta t}{V}\right)^2 + \left(\frac{V \frac{t}{CR^2} \Delta R}{V}\right)^2 Since V=V0et/RCV = V_0e^{-t/RC}, the first term simplifies: et/RCV=et/RCV0et/RC=1V0\frac{e^{-t/RC}}{V} = \frac{e^{-t/RC}}{V_0e^{-t/RC}} = \frac{1}{V_0}. The last term simplifies: tCR2ΔR=tRCΔRR\frac{t}{CR^2} \Delta R = \frac{t}{RC} \frac{\Delta R}{R}.

So, (ΔVV)2=(ΔV0V0)2+(ΔtRC)2+(tRCΔRR)2\left(\frac{\Delta V}{V}\right)^2 = \left(\frac{\Delta V_0}{V_0}\right)^2 + \left(\frac{\Delta t}{RC}\right)^2 + \left(\frac{t}{RC} \frac{\Delta R}{R}\right)^2

Now, calculate the relative uncertainties: ΔV0V0=0.0210.00=0.002\frac{\Delta V_0}{V_0} = \frac{0.02}{10.00} = 0.002 Δtt=1100=0.01\frac{\Delta t}{t} = \frac{1}{100} = 0.01 ΔRR=0.1100.0=0.001\frac{\Delta R}{R} = \frac{0.1}{100.0} = 0.001

And the terms in the equation: t/RC=100/100=1t/RC = 100/100 = 1 ΔtRC=Δtt×tRC=0.01×1=0.01\frac{\Delta t}{RC} = \frac{\Delta t}{t} \times \frac{t}{RC} = 0.01 \times 1 = 0.01 tRCΔRR=1×0.001=0.001\frac{t}{RC} \frac{\Delta R}{R} = 1 \times 0.001 = 0.001

Substitute these values into the equation for (ΔVV)2\left(\frac{\Delta V}{V}\right)^2: (ΔVV)2=(0.002)2+(0.01)2+(0.001)2\left(\frac{\Delta V}{V}\right)^2 = (0.002)^2 + (0.01)^2 + (0.001)^2 (ΔVV)2=0.000004+0.000100+0.000001\left(\frac{\Delta V}{V}\right)^2 = 0.000004 + 0.000100 + 0.000001 (ΔVV)2=0.000105\left(\frac{\Delta V}{V}\right)^2 = 0.000105

Now, calculate ΔVV\frac{\Delta V}{V}: ΔVV=0.0001050.01024695\frac{\Delta V}{V} = \sqrt{0.000105} \approx 0.01024695

Finally, calculate the absolute uncertainty ΔV\Delta V: ΔV=V×(ΔVV)\Delta V = V \times \left(\frac{\Delta V}{V}\right) Using V3.67879 VV \approx 3.67879 \ V: ΔV=3.67879×0.010246950.03769 V\Delta V = 3.67879 \times 0.01024695 \approx 0.03769 \ V

Rounding ΔV\Delta V to one or two significant figures, it is approximately 0.04 V0.04 \ V or 0.038 V0.038 \ V. The nominal voltage is 3.67879 V3.67879 \ V. If we round it to 3.67 V3.67 \ V, then the uncertainty should be consistent. Comparing our result with the options: (A) 2.71 ±\pm 0.01 V (B) 3.67 ±\pm 0.003 V (C) 3.67 ±\pm 0.05 V (D) 3.67 ±\pm 0.37 V

Our calculated voltage is 3.67 V3.67 \ V (or 3.68 V3.68 \ V). Our calculated uncertainty is 0.03769 V0.03769 \ V. Option (C) has V=3.67 VV = 3.67 \ V and ΔV=0.05 V\Delta V = 0.05 \ V. This is the closest option to our calculated uncertainty. 0.03769 V0.03769 \ V rounded up to one significant figure for uncertainty would be 0.04 V0.04 \ V. If we round to a multiple of 5 for simplicity, 0.05 V0.05 \ V is a reasonable choice if the precision is lower.

Let's re-evaluate the rounding. Usually, the uncertainty is quoted to one or two significant figures. 0.037690.0380.03769 \approx 0.038 or 0.040.04. The options are 0.003,0.05,0.370.003, 0.05, 0.37. 0.050.05 is the closest option to 0.0380.038 or 0.040.04.

The final voltage is best represented as 3.67±0.05 V3.67 \pm 0.05 \ V.