Solveeit Logo

Question

Question: The voltage over a cycle varies as \[V = V_{0}\sin\omega\text{t for 0 } \leq t \leq \ \frac{\pi}{\o...

The voltage over a cycle varies as

V=V0sinωt for 0 t πωV = V_{0}\sin\omega\text{t for 0 } \leq t \leq \ \frac{\pi}{\omega}

=V0sinωt for πω t 2πω= - V_{0}\sin\omega\text{t for }\frac{\pi}{\omega}\ \leq t \leq \ \frac{2\pi}{\omega}

The average value of the voltage for one cycle is

A

V02\frac{V_{0}}{\sqrt{2}}

B

V02\frac{V_{0}}{2}

C

Zero

D

2V0π\frac{\text{2}\text{V}_{0}}{\pi}

Answer

2V0π\frac{\text{2}\text{V}_{0}}{\pi}

Explanation

Solution

: The average value of the voltage is

Vav(vkSlr)=02π/ωVdt02π/ωdt=0π/ωV0sinωtdt+π/ω2π/ω(V0sinωt)dt2πω=ω2π[V0cosωtωπ/ω+V0cosωtωπ/ω2π/ω]=V02π[cosπ+cos0+cos2πcosπ]=2V0πV_{av(vkSlr)} = \frac{\int_{0}^{2\pi/\omega}{Vdt}}{\int_{0}^{2\pi/\omega}{dt}} = \frac{\int_{0}^{\pi/\omega}{V_{0}\sin\omega tdt + \int_{\pi/\omega}^{2\pi/\omega}{( - V_{0}\sin\omega t)dt}}}{\frac{2\pi}{\omega}} = \frac{\omega}{2\pi}\left\lbrack {\left| \frac{- V_{0}\cos\omega t}{\omega} \right|^{\pi/\omega}}_{} + \left| \frac{V_{0}\cos\omega t}{\omega} \right|_{\pi/\omega}^{2\pi/\omega} \right\rbrack = \frac{V_{0}}{2\pi}\lbrack - \cos\pi + \cos 0 + \cos 2\pi - \cos\pi\rbrack = \frac{2V_{0}}{\pi}