Solveeit Logo

Question

Question: The vertices of the hyperbola \(9x^{2} - 16y^{2} - 36x + 96y - 252 = 0\) are...

The vertices of the hyperbola

9x216y236x+96y252=09x^{2} - 16y^{2} - 36x + 96y - 252 = 0 are

A

(6,3)(6,3)and(6,3)( - 6,3)

B

(6,3)(6,3) and (2,3)( - 2,3)

C

(6,3)( - 6,3)and (6,3)( - 6, - 3)

D

None of these

Answer

(6,3)(6,3) and (2,3)( - 2,3)

Explanation

Solution

Given Hyperbola is

9x216y236x+96y252=09x^{2} - 16y^{2} - 36x + 96y - 252 = 0

9(x24x)16(y26y)252=09\left( x^{2} - 4x \right) - 16\left( y^{2} - 6y \right) - 252 = 0

9(x2)23616(y3)2+144252=09(x - 2)^{2} - 36 - 16(y - 3)^{2} + 144 - 252 = 0

9(x2)216(y3)2=1449(x - 2)^{2} - 16(y - 3)^{2} = 144

or (x2)242(y3)232=1\frac{(x - 2)^{2}}{4^{2}} - \frac{(y - 3)^{2}}{3^{2}} = 1

or Vertices x2=±4x - 2 = \pm 4 & y=3=0y = - 3 = 0

i.e. 2±4,32 \pm 4,3 or (6,3)&(2,3(6,3)\& ⥂ ( - 2,3