Solveeit Logo

Question

Question: The vertices of a triangle are \(\left( pq,1/\left( pq \right) \right),\left( qr,1/\left( qr \right)...

The vertices of a triangle are (pq,1/(pq)),(qr,1/(qr))\left( pq,1/\left( pq \right) \right),\left( qr,1/\left( qr \right) \right) and (rq,1/(rq))\left( rq,1/\left( rq \right) \right), where p,qp,q and rr are the roots of the equation y33y2+6y+1=0{{y}^{3}}-3{{y}^{2}}+6y+1=0. The coordinates of its centroid are
A. (1,2)A.\text{ }\left( 1,2 \right)
B. (2,1)B.\text{ }\left( 2,-1 \right)
C. (1,1)C.\text{ }\left( 1,-1 \right)
D. (2,3)D.\text{ }\left( 2,3 \right)

Explanation

Solution

In this question we have been given with the three vertices of a triangle which constitute p,q,rp,q,r which are the roots of the equation y33y2+6y+1=0{{y}^{3}}-3{{y}^{2}}+6y+1=0. Given this information, we have to find the coordinates of the centroid of the triangle. We will use the formula C(a1+a2+a33,b1+b2+b33)C\equiv \left( \dfrac{{{a}_{1}}+{{a}_{2}}+{{a}_{3}}}{3},\dfrac{{{b}_{1}}+{{b}_{2}}+{{b}_{3}}}{3} \right)
Where (a1,b1),(a2,b2)\left( {{a}_{1}},{{b}_{1}} \right),\left( {{a}_{2}},{{b}_{2}} \right) and (a3,b3)\left( {{a}_{3}},{{b}_{3}} \right) are the vertices of the triangle. We will also use the properties of roots of a polynomial and find the coordinates of the centroid.

Complete step by step answer:
We have the vertices of the triangle given to us as:
(pq,1/(pq)),(qr,1/(qr))\Rightarrow \left( pq,1/\left( pq \right) \right),\left( qr,1/\left( qr \right) \right) and (rq,1/(rq))\left( rq,1/\left( rq \right) \right)
On putting the values of the vertices in the centroid formula, we get:
C(pq+qr+rp3,1pq+1qr+1rp3)C\equiv \left( \dfrac{pq+qr+rp}{3},\dfrac{\dfrac{1}{pq}+\dfrac{1}{qr}+\dfrac{1}{rp}}{3} \right)
On taking the lowest common multiple in the second coordinate, we get:
C(pq+qr+rp3,p+q+rpqr3)C\equiv \left( \dfrac{pq+qr+rp}{3},\dfrac{\dfrac{p+q+r}{pqr}}{3} \right)
On rearranging the terms, we get:
C(pq+qr+rp3,p+q+r3(pqr))(1)\Rightarrow C\equiv \left( \dfrac{pq+qr+rp}{3},\dfrac{p+q+r}{3\left( pqr \right)} \right)\to \left( 1 \right)
Now we know that p,q,rp,q,r are the roots of the equation y33y2+6y+1=0{{y}^{3}}-3{{y}^{2}}+6y+1=0. Therefore, we know the relationship of the roots with the coefficient of the polynomial as:
p+q+r=3\Rightarrow p+q+r=3
pq+qr+rp=6\Rightarrow pq+qr+rp=6
pqr=1\Rightarrow pqr=-1
Now on substituting the values in equation (1)\left( 1 \right), we get:
C(63,33(1))\Rightarrow C\equiv \left( \dfrac{6}{3},\dfrac{3}{3\left( -1 \right)} \right)
On simplifying the terms, we get:
C(2,1)\Rightarrow C\equiv \left( 2,-1 \right), which is the required coordinate.

So, the correct answer is “Option B”.

Note: the relationship between the roots of a cubic equation px3+qx2+rx+s=0p{{x}^{3}}+q{{x}^{2}}+rx+s=0, where p0p\ne 0, and the roots are α,β\alpha ,\beta and γ\gamma , then we have the relation as α+β+γ=qp\alpha +\beta +\gamma =-\dfrac{q}{p}, αβ+βγ+γα=rp\alpha \beta +\beta \gamma +\gamma \alpha =\dfrac{r}{p} and αβγ=sp\alpha \beta \gamma =-\dfrac{s}{p}. The centroid of a triangle is the central point of the triangle.