Solveeit Logo

Question

Question: The vertices of a triangle are \(\lbrack at_{1}t_{2},a(t_{1} + t_{2})\rbrack,\lbrack at_{2}t_{3},a(t...

The vertices of a triangle are [at1t2,a(t1+t2)],[at2t3,a(t2+t3)]\lbrack at_{1}t_{2},a(t_{1} + t_{2})\rbrack,\lbrack at_{2}t_{3},a(t_{2} + t_{3})\rbrack, [at3t1,a(t3+t1)]\lbrack at_{3}t_{1},a(t_{3} + t_{1})\rbrack, then the coordinates of its orthocentre are.

A

[a,a(t1+t2+t3+t1t2t3)]\lbrack a,a(t_{1} + t_{2} + t_{3} + t_{1}t_{2}t_{3})\rbrack

B

[a,a(t1+t2+t3+t1t2t3)]\lbrack - a,a(t_{1} + t_{2} + t_{3} + t_{1}t_{2}t_{3})\rbrack

C

[a(t1+t2+t3+t1t2t3),a]\lbrack - a(t_{1} + t_{2} + t_{3} + t_{1}t_{2}t_{3}),a\rbrack

D

None of these

Answer

[a,a(t1+t2+t3+t1t2t3)]\lbrack - a,a(t_{1} + t_{2} + t_{3} + t_{1}t_{2}t_{3})\rbrack

Explanation

Solution

m1=a(t1t2t2t3)a(t1t3)=t2,m2=t3m _ { 1 } = \frac { - a \left( t _ { 1 } t _ { 2 } - t _ { 2 } t _ { 3 } \right) } { a \left( t _ { 1 } - t _ { 3 } \right) } = - t _ { 2 } , m _ { 2 } = - t _ { 3 }

Therefore, perpendicular from point third

t2x+y=a[t1t2t3+t1+t3]t _ { 2 } x + y = a \left[ t _ { 1 } t _ { 2 } t _ { 3 } + t _ { 1 } + t _ { 3 } \right]and perpendicular from point first t3x+y=a[t1t2t3+t1+t2]t _ { 3 } x + y = a \left[ t _ { 1 } t _ { 2 } t _ { 3 } + t _ { 1 } + t _ { 2 } \right]

x=a,y=a[t1t2t3+t1+t2+t3]x = - a , y = a \left[ t _ { 1 } t _ { 2 } t _ { 3 } + t _ { 1 } + t _ { 2 } + t _ { 3 } \right].