Solveeit Logo

Question

Question: The vertices of a triangle are \(A\left( { - 1, - 7} \right)\), \(B\left( {5,1} \right)\) and \(C\le...

The vertices of a triangle are A(1,7)A\left( { - 1, - 7} \right), B(5,1)B\left( {5,1} \right) and C(1,4)C\left( {1,4} \right). The equation of the angle bisector of the angle ABC\angle ABC is
A) x+7y+2=0x + 7y + 2 = 0
B) x7y+2=0x - 7y + 2 = 0
C) x7y2=0x - 7y - 2 = 0
D) x+7y2=0x + 7y - 2 = 0

Explanation

Solution

We know that the angle bisector of an angle of a triangle divides the opposite side in the ratio of the length of the other 2 sides. We can find the distance of the sides of a triangle and find the point of intersection of the bisector with the third side using section formula. Then we can find the equation of the line joining the point of intersection and vertex B. This equation will give the required solution.

Complete step by step solution:
We can draw a triangle with the given vertices. We can draw the angle bisector of the angle ABC\angle ABC and it intersects the opposite side at D.

We know that the angle bisector of an angle of a triangle divides the opposite side in the ratio of the length of the other 2 sides.
Now we can find the distance of the other 2 sides.
We know that the distance between to points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is given by d=(x1x2)2+(y1y2)2d = \sqrt {{{\left( {{x_1} - {x_2}} \right)}^2} + {{\left( {{y_1} - {y_2}} \right)}^2}}
So, the side AB is given by,
AB=(5(1))2+(1(7))2AB = \sqrt {{{\left( {5 - \left( { - 1} \right)} \right)}^2} + {{\left( {1 - \left( { - 7} \right)} \right)}^2}}
On simplification, we get
AB=(6)2+(8)2\Rightarrow AB = \sqrt {{{\left( 6 \right)}^2} + {{\left( 8 \right)}^2}}
On taking the square, we get
AB=36+64\Rightarrow AB = \sqrt {36 + 64}
AB=100\Rightarrow AB = \sqrt {100}
On taking the square root, we get
AB=10\Rightarrow AB = 10
Similarly, BC is given by
BC=(51)2+(14)2BC = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {1 - 4} \right)}^2}}
On simplification, we get
BC=42+(3)2\Rightarrow BC = \sqrt {{4^2} + {{\left( { - 3} \right)}^2}}
On taking the squares, we get
BC=16+9\Rightarrow BC = \sqrt {16 + 9}
BC=25\Rightarrow BC = \sqrt {25}
On taking the square root, we get
BC=5\Rightarrow BC = 5
So, the ratio is given by,
ABBC=105\dfrac{{AB}}{{BC}} = \dfrac{{10}}{5}
So, we have,
ABBC=21\Rightarrow \dfrac{{AB}}{{BC}} = \dfrac{2}{1}
We know that by section formula, the coordinates of the point that divides line joining the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) in the ratio m:nm:n is given by, (nx1+mx2m+n,ny1+my2m+n)\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}},\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right).
So, the coordinates of D are given by substituting the coordinates of A and C and the ratio.
D(nx1+mx2m+n,ny1+my2m+n)\Rightarrow D\left( {\dfrac{{n{x_1} + m{x_2}}}{{m + n}},\dfrac{{n{y_1} + m{y_2}}}{{m + n}}} \right)
On substituting the coordinates of A and C and the ratio m:nm:n we get,
D(1×(1)+2×12+1,1×(7)+2×42+1)\Rightarrow D\left( {\dfrac{{1 \times \left( { - 1} \right) + 2 \times 1}}{{2 + 1}},\dfrac{{1 \times \left( { - 7} \right) + 2 \times 4}}{{2 + 1}}} \right)
On simplification, we get
D(1+23,7+83)\Rightarrow D\left( {\dfrac{{ - 1 + 2}}{3},\dfrac{{ - 7 + 8}}{3}} \right)
Hence, we have,
D(13,13)\Rightarrow D\left( {\dfrac{1}{3},\dfrac{1}{3}} \right)
Now we can find the equation of the line joining the points B and D.
We know that the equation of the line joining the points (x1,y1)\left( {{x_1},{y_1}} \right) and (x2,y2)\left( {{x_2},{y_2}} \right) is given by,
yy1=y2y1x2x1(x2x1)y - {y_1} = \dfrac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}}\left( {{x_2} - {x_1}} \right)
On substituting the coordinates of the points B and D, we get
y1=131135(x5)\Rightarrow y - 1 = \dfrac{{\dfrac{1}{3} - 1}}{{\dfrac{1}{3} - 5}}\left( {x - 5} \right)
On taking LCM, we get
y1=1331153(x5)\Rightarrow y - 1 = \dfrac{{\dfrac{{1 - 3}}{3}}}{{\dfrac{{1 - 15}}{3}}}\left( {x - 5} \right)
On cancelling the denominator, we get
y1=214(x5)\Rightarrow y - 1 = \dfrac{{ - 2}}{{ - 14}}\left( {x - 5} \right)
On simplifying and cross multiplying, we get
7(y1)=(x5)\Rightarrow 7\left( {y - 1} \right) = \left( {x - 5} \right)
On expanding the brackets, we get
7y7=x5\Rightarrow 7y - 7 = x - 5
On rearranging, we get
x7y+2=0\Rightarrow x - 7y + 2 = 0
Therefore, the required equation of the angle bisector is x7y+2=0x - 7y + 2 = 0.

So, the correct answer is option B.

Note:
Alternative solution to the problem is given by,
We know that the angle bisector passes through the angle. So, point B must satisfy the equation of the angle bisector.
Consider option A x+7y+2=0x + 7y + 2 = 0. On substituting the point B(5,1)B\left( {5,1} \right), we get
LHS=5+7×1+2=140\Rightarrow LHS = 5 + 7 \times 1 + 2 = 14 \ne 0
So, option A is not a solution.
Consider option B x7y+2=0x - 7y + 2 = 0. On substituting the point B(5,1)B\left( {5,1} \right), we get
LHS=57×1+2=77=0\Rightarrow LHS = 5 - 7 \times 1 + 2 = 7 - 7 = 0
So, option B is the required solution.